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Forecasting the Quantiles of Daily Equity Returns
Using Realized Volatility: Evidence from the Czech
Stock Market
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Abstract In this study, we evaluate the quantile forecasts of the daily equity returns on three
of the most liquid stocks traded on the Prague Stock Exchange. We follow the recent findings
that consider the potential value of intraday information for volatility forecasting and, instead of
proxying volatility using daily squared returns, we use both the intraday returns as well as their
lower frequency aggregate (realized volatility) to forecast volatility and ultimately the quantiles
of the distributions of future returns under different scenarios. We find that a simple autore-
gressive model for realized volatility together with the assumption of a normal distribution for
expected returns results in VaR forecasts that are no worse than those based on other models
(HAR, MIDAS) and/or other methods of computing the distribution of future returns. In fact,
similar results obtain across the different forecast horizons and at both 2.5% and 5% VaR levels
despite superior performance of HAR model in out-of-sample volatility forecasts.
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realized volatility, Value-at-Risk
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1. Introduction

The research into reliable and accurate risk-management methodologies has for the
last twenty years represented an active and growing area of financial econometrics.
Inspired in the financial markets where every day, both financial and non-financial in-
stitutions face the difficult task of estimating the extent of market risk exposure so as to
make better informed and more efficient capital decisions in the future, the importance
of risk-management research has only intensified with the recent turbulent economic
events.

The central focus of this study is the most common measure of risk in use today,
the Value-at-Risk (VaR). Developed in the 1990s to quantify and assess the market
risk exposure, the widespread popularity of the VaR owes mainly to its adoption as the
First Pillar in the Basle II agreements (Basel Committee 2005) that regulates the total
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minimum capital requirements for credit, market and operational risk faced by a bank.1

We adopt a standard approach to measuring and estimating the VaR, structured as
one involving both the choice of a model to forecast volatility and of the method of ob-
taining the quantile estimates from the volatility forecasts; unlike many of the studies,
however, we depend solely on the use of high-frequency returns in order to forecast
volatility. In other words, instead of proxying volatility using (daily) squared returns,
we exploit the information inherent in intraday returns to construct the volatility fore-
casts and ultimately the quantiles of the distributions of future returns.

Our motivation stems from the recent financial econometrics literature that has
shown a potential value of using both the lower-frequency aggregates of intraday re-
turns such as realized volatility or realized power variation (e.g. Andersen et al. 2003;
Barndorff-Nielsen and Shephard 2003), or even intraday returns themselves (Ghy-
sels et al. 2006; Ghysels et al. 2007) for volatility forecasting. With this literature
in mind and, understanding that there are a number of other models that we could
potentially use, we choose to employ the Heterogeneous Autoregressive model—or
HAR—of Corsi (2009) that makes use of the intraday returns in aggregated form, and
the MIxed Data Sampling model—or MIDAS—of Ghysels et al. (2006) that is known
for its ability to project the dependent variable directly onto intraday returns. Both
of these models have been found to predict volatility reasonably well, especially at
lower frequencies. In addition, we also consider a simple autoregressive model as a
benchmark.

Following a brief evaluation of the relative forecasting performance of the alterna-
tive volatility models, we use the predicted volatility to construct the quantile forecasts.
As in Clements et al. (2008), we consider two ways of calculating the quantile fore-
casts. In particular, we assume either a specific distribution for the predictive density of
future returns (Normal and Student-t) or obtain the predicted quantiles directly, using
the empirical distribution function of the returns standardized with volatility forecasts.
We examine the performance of the two methods relative to the benchmark Normal
and AR cases.

Our analysis is based on intraday returns on three of the most liquid stocks traded
on the Prague Stock Exchange, a post-emerging equity market in the Central and East-
ern European (CEE) region. To the best of our knowledge, this study is the first in the
CEE region to use high-frequency intraday data in order to estimate the quantiles of
(daily) equity returns and second only to Žikeš (2008) to forecast realized volatility.
In this respect, we contribute to a growing literature that investigates the forecasting
power of empirical models designed to make use of intraday data and their usefulness
in practice.

Our results show that a simple autoregressive model for realized volatility together
with the assumption that the expected future returns follow a normal distribution leads
to the quantile forecasts that are at least as good as those obtained from the other
models. In fact, the same performance of the AR model holds true across the equity
returns analyzed, regardless of the forecast horizon. Furthermore, the results from the
quantile forecasts obtain despite the fact that HAR models seem to perform better than

1 See Jorion (2005) for an extensive review of major applications of the VaR approach.
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either AR or MIDAS models in the out-of-sample volatility forecasting exercise.
The remainder of the paper is organized as follows. In the next section, we briefly

describe the data and discuss how we construct the returns. Following a note on the
choice of the appropriate sampling frequency, we also discuss the derivation of the
volatility measures employed in the empirical part of the study. The section concludes
with the descriptive statistics. In Section 3, we describe the volatility forecasting mo-
dels and, in Section 4, the methodology behind the construction and evaluation of the
volatility and quantile forecasts. Finally, in Section 5 we present the empirical results.
Section 6 concludes.

2. Intraday returns and volatility

2.1 Intraday returns

The empirical part of our study is based on the intraday price data for three of the
most liquid companies traded on SPAD segment of the Prague Stock Exchange:2 ČEZ
(further denoted as CEZ), the largest electricity producer in the country, Telefónica O2
Č.R. (TEF), a telecommunications company, and Komerčnı́ Banka (KOB), the third
largest bank in the country.3 The sample runs for the period from January 3, 2000 to
December 30, 2008 yielding a total of N = 2,246 trading days. A shorter dataset is
examined in Žikeš (2008) and we refer the reader to the latter study for any details that
she might find missing here.

Prior to the construction of the intraday returns, we perform a basic cleaning pro-
cedure following Barndorff-Nielsen et al. (2008). As part of the procedure, we also
remove all observations outside of regular trading hours which, until April 1, 2008, ran
from 9:30am till 4:00pm Central European Time. Exclusion of the overnight informa-
tion remains a standard practice in the volatility modeling literature when only intra-
day information needs to be considered (see e.g. Bollerslev et al. 2009). In particular,
it allows to avoid distortions associated with lower liquidity during the non-business
trading hours. This said, towards the end of the study we also consider the robustness
of the results when the overnight information is included.

We define the intraday (raw) returns as the first difference of the logarithms of the
mid-points of the best bid (B) and the best ask (A) prices, sampled along a 30 minute
time grid. Formally, at any given time j = 1, . . . ,m of day t, where m denotes the
number of intraday returns, an intraday (raw) return is defined as rt, j = 100(pt−1+ j/m−
pt−1+( j−1)/m), where p = lnP and P = (B + A)/2. Given the 30 minute sampling
frequency and six-and-a-half regular trading hours, we have m = 13 intraday returns.
This gives us a total of 21,198 intraday returns for the whole sample.

The choice of the 30 minute sampling frequency is, of course, not arbitrary. It is

2 SPAD, or Stock and Bond Market Support System, is a price-driven trading system run by PSE based on
the activity of market makers. A detailed description of the SPAD is provided by Hanousek and Podpiera
(2004). Additional information can be found in Bubák and Žikeš (2006).
3 As of March 1, 2009, the combined capitalization of the three stocks was nearly 65% of the PX index, the
main market index of the PSE. Note also that prior to May of 2005, Telef ónica O2 Č.R. (Bloomberg: SPTT
CP) traded as Český Telecom.
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well known that the high-frequency returns are subject to a host of market microstruc-
ture features including bid-ask bounce effects, discrete price observations, infrequent
and nonsynchronous trading, et cetera, which may all distort the properties of re-
turns. Of immediate consequence of the presence of noise for any study that uses
high-frequency returns to estimate the ex-post daily volatility, including our own, is
that a simple estimator of daily volatility such as realized volatility (discussed further
in the text) may no longer be consistent. Bandi and Russell (2005) provide a simple
technique to identifying both the genuine time-varying volatility of the unobservable
returns and the variance induced by the microstructure noise.

We follow the findings of Žikeš (2008) who discusses the choice of the sampling
frequency in detail. In particular, Žikeš (2008) suggests using a 30 minute sampling
frequency as a reasonable compromise between the noise-induced bias introduced to
the realized volatility estimator by sampling more frequently and the loss of informa-
tion from sampling at frequencies lower than 30 minutes. The same estimator is also
shown to behave better than a microstructure-robust estimator of Zhou (1996) which,
even at the 30 minute frequency, remains biased relative to the former and only expe-
riences an increase in its variance at the frequencies beyond 30 minutes.

2.2 Volatility measures

Andersen and Bollerslev (1998) were perhaps the first to point out that high-frequency
data can be used to form both more accurate and meaningful ex-post volatility mea-
surements. Andersen et al. (2001) elaborated on these findings when they formally
showed that the ex-post volatility may be estimated to any degree of accuracy sim-
ply by summing sufficiently high-frequency returns within a day. The corresponding
measure, termed (daily) realized volatility (Andersen et al. 2000), is then defined as a
cumulative sum of squared intraday returns,

RVt,t+1 =
m

∑
j=1

(rt, j)2, (1)

where rt, j represents an (intraday) return obtained for time j of day t.
In the absence of microstructure noise, (1) can be shown to be consistent for the

so called integrated variance, a natural albeit unobservable measure of volatility, plus
a possible jump component (Andersen et al. 2001). As already noted, in the presence
of an equally unobservable microstructure noise the realized volatility becomes biased,
with the variance growing larger the higher the sampling frequency. Barndorff-Nielsen
and Shephard (2002) study the asymptotic properties of realized volatility and present
conditions under which it is also an unbiased estimate. Andersen et al. (2003) dis-
cuss the theoretical framework underlying the construction and general properties of
realized volatility.

In our study, we use both a daily version of RV , defined in (1), as well as its five-
day (weekly) and ten-day (bi-weekly) versions obtained by summing (1) over five-day
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and ten-day periods (D = 5,10), respectively, as follows

RVt,t+D =
D

∑
j=1

RVt+ j−1,t+ j. (2)

Several other classes of empirical processes based on high-frequency data and re-
lated to volatility have been found to have a predictive power. We choose to examine
the predictive performance of the realized absolute variation, RAV , in addition to RV
itself. First introduced by Barndorff-Nielsen and Shephard (2004), the RAV is con-
structed in terms of absolute values of intraday returns as

RAVt,t+1 = µ
−1m−1/2

m

∑
j=1
|rt, j|, (3)

where µ ≡


2/π denotes the mean of the absolute value of standard Normal random
variable, E(|Z|). The fact that an absolute value (and not a square) function is used in
the construction of RAV provides a clue as to why the RAV has a potential to improve
the volatility modeling.

First, it has been long recognized that the absolute value returns reflect stronger per-
sistence than squared returns, therefore providing a potentially better signal for volatil-
ity (see e.g. Ding et al. 1993).4 Second, the absolute returns are relatively less sensitive
to large price movements and as such may provide more accurate predictions during
the periods with jumps. In fact, Barndorff-Nielsen and Shephard (2004) show that
under certain mild conditions, the RAV is not affected by the jump component of the
underlying measure of intraday variation. To some extent, such immunity is relevant
even to our study, as Žikeš (2008) provides evidence of the presence of rare jumps in
the same, albeit shorter set of data. Finally, Ghysels et al. (2006) and Forsberg and
Ghysels (2007) show that regressions involving the absolute values of high-frequency
returns as explanatory variables can improve forecasts of realized volatility at lower
frequencies.

2.3 Descriptive statistics

We employ a logarithm of the square root of realized volatility as a dependent vari-
able in all regressions. The logarithmic transformation has been commonly applied
in many studies on realized volatility forecasting, including e.g. Forsberg and Ghy-
sels (2007), Andersen et al. (2007) and Clements et al. (2008), and follows naturally
from an observation that the distribution of the logarithmic realized volatility (or, log-
arithmic standard deviation, logRV 1/2), can be well approximated by the Gaussian
distribution. First noted by Andersen et al. (2001) and Andersen et al. (2003), the log-
normality of realized volatility also suggests and greatly facilitates the use of standard
linear approaches to modeling and forecasting the logarithmic realized volatilities.

4 Liu and Maheu (2005) also mention that if higher order moments of returns (e.g. fourth moment) do not
exist, the absolute value of returns will be more reliable as its variance is more likely to exist.
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Table 1. Descriptive statistics

Mean S.D. Skew. Kurt. Min Max JB LB(20)

A: Logarithmic realized SD

CEZ l rv1 0.195 0.585 0.024 3.308 −1.780 2.290 9.082 2,719
l rv5 1.144 0.425 0.527 3.630 −0.006 2.724 141.1 11,258
l rv10 1.527 0.385 0.665 3.704 0.631 2.934 211.7 17,706

KOB l rv1 0.251 0.586 0.011 3.333 −1.648 2.333 10.44 3,748
l rv5 1.193 0.433 0.515 3.606 −0.153 2.679 133.6 14,465
l rv10 1.572 0.400 0.621 3.621 0.610 2.961 180.6 20,623

TEF l rv1 0.099 0.788 −0.741 4.771 −4.169 2.243 499.1 13,628
l rv5 1.054 0.667 −0.962 5.506 −2.216 2.530 934.2 24,730
l rv10 1.441 0.626 −0.990 5.481 −1.833 2.829 942.4 29,226

B: Standardized returns

CEZ s r1 0.102 1.070 −0.056 2.073 −2.573 2.617 81.62 29.24
s r5 0.172 1.090 0.020 2.480 −2.998 3.101 25.44 2,569
s r10 0.224 1.098 0.059 2.520 −2.799 3.227 22.89 7,024

KOB s r1 0.042 1.047 −0.051 2.172 −2.676 3.007 65.19 26.72
s r5 0.088 1.099 0.015 2.511 −3.053 3.514 22.47 2,778
s r10 0.114 1.109 0.017 2.595 −2.993 3.489 15.47 6,384

TEF s r1 −0.006 1.033 0.080 2.163 −2.588 2.693 67.89 16.55
s r5 −0.001 1.077 0.026 2.416 −2.732 3.012 32.21 2,818
s r10 −0.006 1.099 0.034 2.544 −3.248 3.064 19.90 6,519

Note: JB contains Jarque-Bera test statistic for the null hypothesis of normality of the series; i.e., Skew. =
0 and Kurt. = 3 (5% crit. value is 5.99). The column labeled LB(20) contains Ljung-Box test statistics for
the null hypothesis of no autocorrelation up to lag 20 in the series (5% crit. value is 31.41). The sample
runs from January 3, 2000 to December 30, 2008 (2,246 observations).

Panel A of Table 1 reports basic descriptive statistics for the logarithms of the
square root of realized volatility, log(RV 1/2

t,t+H), denoted in the table as l rvH for the
particular horizons of H = (1,5,10) days. The statistics make it evident that most
of the returns series are not normally distributed; indeed, of the nine series in this
group, only two series (CEZ, KOB) seem to be reasonably close to being normal in
case of H = 1, owing largely to the relatively small skewness and excess kurtosis of
only around 0.3. Figure 1 (upper row) confirms this observation by plotting the kernel
density estimates for the case of l rv1.

The Ljung-Box statistics indicate a presence of strong serial correlation in the real-
ized volatilities for all three stocks, reflecting the long-memory property of the realized
volatility. Žikeš (2008) discusses the basic distributional and dynamic characteristics
of the three stock returns and realized volatilities in greater detail and provides also a
graphical confirmation of an apparent hyperbolic decay characteristic of a long-range
serial dependence present in the series.

Panel B presents descriptive statistics for one-day, five-day, and ten-day returns
standardized with the appropriate square root of realized volatility, rt,t+H/RV 1/2

t,t+H .
Again, the series are denoted as s rH for simplicity. First note that, although much
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more symmetric than l rvH , the null hypothesis of normality of standardized returns is
similarly rejected at any reasonable level of significance for most of the series.

The kernel density estimates of s r1, shown in Figure 1 (lower row), illustrate ad-
ditional points related to the normality of the standardized returns. For example, it
is the relatively low sampling frequency (m = 13) that drives the fourth moment of
the distribution of standardized returns well below its asymptotic (normal) value of 3
as much as it restricts the support of the distribution to the [-

√
m,
√

m] bounds (about
[−3.6,3.6] in our study). Perceptibly thin tails evident in the particular shapes of the
kernel density estimates are also given by construction; see Andersen et al. (2007).5

3. Volatility forecasting models

In this section we discuss the three regression models used in our study to predict
the future realized volatility: the heterogeneous autoregressive model (HAR) of Corsi
(2009), the MIxed Data Sampling (MIDAS) model of Ghysels et al. (2004), and a
plain-vanilla AR model that we use as a benchmark. We specify the AR model first,
followed by HAR and MIDAS models.

The AR specification

The simplest forecasting model model employed in this study is a simple autoregres-
sion of the logarithm of the square root of realized volatility on its past values:

logRV 1/2
t,t+H = α0 +

p

∑
d=1

αd logRV 1/2
t−d,t−d+1 + εt+H , (4)

5 Unlike the center of the distribution that would tend to standard normal as m→∞, however, the tails would
remain thin and only close to normal under the same circumstances.
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where p represents the number of lags. In particular, we let p = 5, so that we use the
information of the previous five days to forecast the dependent variable.

The HAR specification

The heterogeneous autoregressive model of Corsi (2009) considers the previous one-
day, five-day (one week), and twenty-day (1 month) realized volatility to predict the
current value of the dependent variable. Formally, the model is given by the following
equation:

logRV 1/2
t,t+H = β0 +β1 log RV

1/2
t−1,t +β2 log RV

1/2
t−5,t +β3 log RV

1/2
t−20,t + εt+H , (5)

where the regressors on the right hand side of (5) are defined as (the logarithms of) the
normalized sums of the past one-period realized volatilities,

RV
1/2
t−h,t = h−1

h

∑
k=1

RV 1/2
t−k,t−k+1, (6)

where h = (1,5,20) denotes the number of days over which the normalized sum is
constructed. In the similar fashion, in the empirical part of the study we also employ
realized absolute variation, (3), to estimate the dependent variable. The corresponding
regressors on the right hand side of (5) are then constructed as in (6), i.e. as (normal-
ized) sums of the past one-period realized absolute variations.

Originally developed with the purpose of modeling and forecasting the time series
behavior of volatility, the HAR model has been shown to perform better or at least
as well as other common volatility models, including ARFIMA and GARCH, be it in
both in- and out-of-sample volatility exercises (see Žikeš 2008 for the case of Czech
data). The structure of the HAR model, namely the short-term and the long-term real-
ized volatility components that enter the model as regressors, also lends it an intuitive
interpretation; specifically, the latter components allow it to account for the different
reaction times of various market participants to the arrival of news, hence directly re-
lating the corresponding long- and short-term volatility patterns over time. This way,
the HAR model contrasts with the true long-memory models such as ARFIMA and
FIGARCH which, other shortcomings aside, completely lack clear economic inter-
pretation (Corsi 2009). For various recent applications of the HAR model, see e.g.
Andersen et al. (2007), Forsberg and Ghysels (2007), or Chung et al. (2008).

The MIDAS specification

The particular version of the MIDAS regression model we use can be written as:

logRV 1/2
t,t+H = µH +φH log


kmax

∑
k=0

bH (k,θ)Lk/mr2
t

1/2

+ εt+H , (7)

where φH is the scale parameter, bH(k,θ) are the lag coefficients (weights) defined
further below, and L1/m is a lag operator with the property that L1/mr2

t = r2
t−k/m. In
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other words, we are projecting the dependent variable onto past squared returns sam-
pled at intraday frequency m.6 In our study, we let kmax = 65. Consequently, previous
five days of intraday returns (5·m = 65) enter the right hand side of (7), effectively
providing the same information as in the case of (4) with p = 5.

We parametrize bH (k;θ), θ =[θ1,θ2], as an Exponential Almon Lag,

bH (k;θ) =
eθ1k+θ2k2

∑
kmax
k=0 eθ1k+θ2k2 . (8)

The exponential parametrization has been known to provide a significant flexibility,
as illustrated for a two-parameter case in Ghysels et al. (2005).7 We leave further
details of the model to the studies of Ghysels et al. (2004) and Ghysels et al. (2007).

As a relatively simple, parsimonious, yet flexible framework that allows for inte-
gration of high-frequency time-series data into forecasting lower frequency dependent
variables, the MIDAS model has seen a wide range of applications, especially in the
domain of financial and macroeconomic analysis. Although most of the empirical
studies proved a satisfactory performance of the model based on the U.S. data (e.g.
Forsberg and Ghysels 2007, Clements and Galvâo 2008), the model has been shown
to achieve good results also in the studies analyzing emerging markets returns (see e.g.
Alper et al. 2008). Consequently, it is only natural to inquire about the ability of the
model to perform well also in the Czech settings.

4. Quantile forecasts

The models discussed in the previous section are used to obtain the forecasts of the
logarithm of the square root of realized volatility for each stock and forecast hori-
zon. To recover the forecasts of realized standard deviation needed for the construc-
tion of the quantile forecasts (referred to interchangeably as VaR), we follow Forsberg
and Ghysels (2007) and undo the logarithmic transformation simply as [RV 1/2

t,t+H ] f =

exp([logRV 1/2
t,t+H ] f ), where f denotes a forecast.

At this point, it becomes instructive to recall the formal definition of Value-at-Risk
(VaR). Let rt,t+H denote the sum of daily exchange rate returns from (t +1) to (t +H).
Then the (conditional) VaR, vt,t+H(p), is implicitly defined as the level of return rt,t+H
that is exceeded with probability α , α ∈ (0,1),

vt,t+H(α)≡ inf
v
{v : Pt(rt,t+H ≤ v|It)≥ 1−α}, (9)

where It is the information available at time t. From (9) it is clear that finding a v is
equivalent to uncovering the conditional quantile of rt,t+H ,

vt,t+H(α) = F−1
rt,t+H

(1−α|It), (10)

6 For reasons mentioned in Section (2.2) and similarly to Forsberg and Ghysels (2007), we also employ
absolute returns, |rt |, as an explanatory variable in (7).
7 Indeed, if more than two parameters are used, the flexibility of the exponential specification surpasses in
theory that of another specification widely employed in the literature, “Beta Lag” (Ghysels et al. 2007), that
is based on a Beta function and only two parameters.
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where F−1
rt,t+H

(·|It) is an inverse of the conditional distribution function of rt,t+H .
Assuming that the underlying exchange rate returns are unpredictable in the mean,

i.e. rt,t+H = [RV 1/2
t,t+H ] f zt,t+H , where zt,t+H is i.i.d, we can then use the forecasts of

realized standard deviation to obtain the H-step ahead quantile forecasts at level α as

v̂t,t+H(α) = [RV 1/2
t,t+H ] f F−1

t (1−α). (11)

The exposition presented so far raises a question of what distribution to use for
Ft . Although not confirmed by the descriptive statistics (see Section 2.3), we consider
a normal distribution as the first method of approximating the predictive distribution
of standardized returns. In short, we let F−1

t = Φ−1, where Φ is the c.d. f . of the
(standard) normal distribution.

As a second method, we consider Student’s t-distribution. Although not validated
by our data, our choice is guided by Clements et al. (2008) who use it as an alternative
to the normal distribution in order to approximate predictive distributions for the data
that display descriptive statistics similar to our own. We use eight degrees of freedom
to approximate the predictive distribution of standardized returns when employing the
Student’s t-distribution.8

In addition to using parametric distributions, we also employ an empirical distri-
bution function (EDF) of the returns standardized by the forecasts of realized standard
deviation, rt,t+H/[RV 1/2

t,t+H ] f , to calculate the predicted quantiles; that is, we let

F−1
t = Q−1

EDF . (12)

Clements et al. calculate the EDF using both recursive and rolling samples of pre-
vious forecasts and we adopt both formulations also in our study. In particular, we
first estimate the model on the sample up to time T (in-sample period). We then
use an integer part of rT , r = 0.24, observations of the standardized returns, con-
structed using the predicted values of realized standard deviation based on the pe-
riod (1− r)T +1, . . . ,T −H (window), to compute the first quantile forecast at t = T .
The calculation of each additional quantile forecast from t = T + 1 to T + N −H,
where N is the size of the out-of-sample period and H is the forecast horizon, dif-
fers according to the forecasting scheme. While in the recursive scheme, the num-
ber of observations increases by one with each forecast (i.e., the window increases
from (1− r)T +1, . . . ,T −H to (1− r)T +1, . . . ,T −H, . . . ,T −H +N), in the rolling
scheme, the number of observations used remains fixed at rT .

There are several ways to evaluate the accuracy of quantile forecasts. In our study,
we employ what is known in the literature as a tick loss function (see e.g. Giacomini
and Komujer 2005, Brownlees and Gallo 2008). If we let ei

t,t+H = ri
t,t+H − vi

t,t+H(α),
where i denotes the relevant model, we can write the tick loss function as

Li
H(α) =


α−1(ei

t,t+H < 0)

· ei

t,t+H . (13)

8 Anticipating the results, we note that while reporting the results for eight degrees of freedom, we also
performed the analysis with 4, 6, and 10 degrees of freedom; however the results did not differ substantially.
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The forecast is said to be optimal if it minimizes Et

Li

H(α)

. This expectation can then

be estimated as N−1
∑

n
t=1 L̂i

H(α), where L̂i
H(α) is obtained using the forecasts v̂t,t+H .

It is evident that part of the definition of (13) is related to the measure of uncon-
ditional coverage, α − 1(ei

t,t+H < 0), that is used in testing the null hypothesis that
the number of violations implied by the model (actual coverage) equals to the nominal
level α . Note, however, that in case of (13), the difference between the return and the
predicted quantile, ei

t,t+H , is weighted by α when ei
t,t+H > 0 and by (1−α) otherwise.

Diebold and Mariano (1995) suggest a simple testing procedure to assess whether
the differences between any two sets of forecasts are statistically significant. Given a
set of forecasts (i, j), we first generate a loss differential

δH(α) =

α−1(ei

t,t+H < 0)

· ei

t,t+H −

α−1(e j

t,t+H < 0

· e j

t,t+H . (14)

Under the null hypothesis of no difference in the predictive accuracy between the two
sets of forecasts, or H0 : E(δH(α)) = 0, the test statistic

S = δ H(α)


avar(δ H(α))
−1/2

, (15)

where δ H(α) is the average loss differential and avar(δ H(α)) is a consistent estimate
of the asymptotic (long-run) variance of δ̄ , is asymptotically distributed N(0,1). We
specify a one-sided test, implying that rejecting the null hypothesis renders the set of
forecasts j more accurate than the set i.

5. Empirical Results

The methodological part of the study was organized so as to logically follow the two-
stage procedure involved in the construction of quantile forecasts. Similarly, in this
section we present the empirical results by first focusing on the relative performance
of the volatility models in forecasting the realized volatility, followed by an evaluation
of the various methods of obtaining the quantile forecasts.

We discuss the in-sample performance of the volatility models first, followed by a
thorough description of the out-of-sample results. Table 2 presents the summary of an
in-sample fit for the logarithm of the square root of realized volatility for the individual
models, with HAR and MIDAS models further differentiated according to whether
squared (HARRV , MIDASRV ) or absolute returns (HARRAV , MIDASRAV ) were used in
the construction of the regressors.

Although not immediately clear, closer inspection of the results makes it evident
that the HAR model based on RAV offers the best fit overall, followed by the MIDAS
model estimated using absolute returns. Note, however, that if only squared returns
were used in the estimation, the AR and MIDAS models would lead to better results,
with an AR model providing nearly the same in-sample fit as computationally much
more intensive MIDAS model, especially at longer forecast horizons.
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Table 2. In-sample R2

H = 1 H = 5 H = 10
CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF

Levels
AR(5) 0.222 0.236 0.599 0.232 0.307 0.651 0.233 0.278 0.615
HARRV 0.229 0.253 0.616 0.257 0.347 0.677 0.252 0.319 0.641
HARRAV 0.228 0.248 0.613 0.251 0.313 0.671 0.238 0.276 0.633
MIDASRV 0.227 0.253 0.607 0.246 0.346 0.653 0.243 0.320 0.613
MIDASRAV 0.226 0.250 0.607 0.249 0.305 0.651 0.240 0.265 0.612

Ratios
HARRV 1.030 1.070 1.029 1.105 1.131 1.041 1.084 1.146 1.042
HARRAV 0.994 0.980 0.995 0.976 0.902 0.990 0.946 0.865 0.989
MIDASRV 0.996 1.019 0.990 0.979 1.106 0.974 1.048 1.160 0.968
MIDASRAV 0.995 0.989 0.999 1.013 0.877 0.996 0.986 0.827 0.999

Note: The lower part of the table presents the ratios of R2 for the given model over the R2 for the corre-
sponding AR(5) model; i.e., (R2)i

H,s/(R2)AR
H,s, where i (s) denotes the model (stock), respectively.

Table 3. Out-of-sample RMSE comparison

Fixed Scheme Recursive Scheme Rolling Scheme
CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF

H = 1
AR(5) 0.444 0.459 0.476 0.440 0.456 0.476 0.437 0.455 0.476
HARRV 0.986 0.981 0.994 0.989 0.984 0.993 0.991 0.984 0.992
HARRAV 0.970 0.968 0.993 0.976 0.975 0.992 0.980 0.977 0.990
MIDASRV 1.051 1.031 1.078 1.052 1.034 1.071 1.050 1.027 1.070
MIDASRAV 1.017 1.021 1.073 1.032 1.026 1.068 1.034 1.021 1.067

H = 5
AR(5) 0.149 0.157 0.160 0.145 0.154 0.160 0.142 0.153 0.160
HARRV 0.978 0.949 0.966 0.984 0.956 0.967 0.993 0.955 0.965
HARRAV 0.977 0.934 0.986 0.988 0.944 0.983 0.994 0.945 0.976
MIDASRV 1.039 1.005 1.066 1.041 1.011 1.063 1.048 1.013 1.065
MIDASRAV 1.020 0.992 1.079 1.028 0.999 1.072 1.036 1.002 1.071

H = 10
AR(5) 0.105 0.113 0.110 0.103 0.110 0.110 0.102 0.110 0.110
HARRV 0.980 0.950 0.958 0.984 0.954 0.960 0.989 0.954 0.958
HARRAV 0.982 0.940 0.988 0.988 0.948 0.985 0.986 0.950 0.976
MIDASRV 1.142 1.006 1.016 1.028 1.012 1.013 1.038 1.017 1.012
MIDASRAV 1.014 1.002 1.044 1.018 1.007 1.036 1.023 1.013 1.030

Note: The RMSE is calculated as the square root of the sum of squared forecast errors divided by H. The
initial (in-sample) estimation is based on 1,750 observations corresponding to the period from January 3,
2000, to January 25, 2007. There are 474 out-of-sample forecasts.

We use three forecasting schemes to obtain the out-of-sample (OOS) forecasts. To
this end, we split the data into two periods: the in-sample period, 1, . . . ,T , and the out-
of-sample period, T + 1,T + 2, . . . ,T + N, where N is the number of OOS forecasts.
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The in-sample period corresponds to the interval from January 3, 2000, to January 25,
2007, or 1,750 observations, while the out-of-sample period runs from January 26,
2007 to December 30, 2008. The division yields N = 474 OOS forecasts, or 21.3% of
the entire sample.

In the fixed scheme, the in-sample period observations are used to estimate the
parameters that remain fixed over the out-of-sample period. In the recursive scheme,
an observation is added at each forecast origin so that, for example, the first four ob-
servations of the out-of-sample period, T + 1, . . . ,T + 4, are used in addition to all
observations of the in-sample period to obtain the forecast at T +5. Finally, the rolling
scheme employs a fixed window of size T (length of the in-sample period), so that both
the start and the end of the window successively increase by one observation prior to
each OOS forecast.

The out-of-sample results—classified according to the forecasting scheme em-
ployed—are presented in Table 3. We use a root mean square error (RMSE) to compare
the accuracy of the models. The use of a mean square error (MSE) has been a common
practice in the recent volatility forecasting literature; see e.g., Forsberg and Ghysels
(2007). As demonstrated by Patton (2006), the MSE loss function is also robust with
regards to the volatility proxy used.

With the exception of the AR model, for each stock s, model i, and forecast horizon
H, we report the ratio of RMSE over the RMSE for an AR model, RMSE i

H,s/RMSEAR
H,s,

as a measure of the forecasting performance of the model relative to the AR benchmark.
Thus, ratios below one indicate that a given model outperforms the benchmark.

The results show that HAR model is the best model overall, performing still bet-
ter than the benchmark model at each forecast horizon. The use of absolute returns
improves the performance of both HAR and MIDAS models marginally at H = 1, al-
though the gains become generally smaller at longer forecast horizons. In case of the
TEF stock, the models based on squared returns perform better yet than those based on
absolute returns, especially at H = 5 and H = 10. For this reason, we will only work
with the regressors based on squared returns when constructing the quantile forecasts.9

Additional conclusions emerge when we compare the performance of the models
across the different forecasting schemes. Except for the AR model, there seems to be
a small gain from updating the parameter estimates over the out-of-sample period. In
fact, the rolling and recursive schemes perform marginally worse than the fixed scheme
for both HAR and MIDAS models at each forecast horizon in case of two out of three
stocks (CEZ and KOB). The TEF stock seems to benefit when the parameters remain
fixed over the out-of-sample period.

The latter observations are confirmed by comparing the (expected) loss implied by
the 5% quantile (VaR) forecasts when the standardized returns are assumed to follow
normal distribution (Table 4). Similarly to the findings from the volatility forecasts,
there seems to be a little advantage to using either a recursive or a rolling scheme in
VaR forecasts, with only the TEF stock experiencing consistently albeit marginally
smaller losses across the different models and horizons.

9 Table A1 reports in-sample estimates from AR, HAR, and MIDAS models when the regressors are based
on squared returns.
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Table 4. Out-of-sample tick loss comparison: 5% VaR forecasts

Fixed Scheme Recursive Scheme Rolling Scheme
CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF

H = 1
AR 12.39 13.76 9.646 12.50 13.89 9.601 12.58 13.87 9.499
HAR 12.43 13.89 9.287 12.56 14.04 9.277 12.68 14.10 9.221
MIDAS 12.64 13.93 9.656 12.71 14.04 9.591 12.80 13.99 9.454

H = 5
AR 33.40 35.90 27.67 33.60 36.19 27.42 33.68 35.97 26.90
HAR 33.51 36.26 26.88 33.76 36.62 26.77 33.82 36.57 26.41
MIDAS 33.38 36.07 27.95 33.59 36.33 27.71 33.71 36.16 27.16

H = 10
AR 47.65 50.28 40.42 47.80 50.69 39.97 47.60 50.19 39.06
HAR 47.65 50.69 39.32 47.91 51.23 39.07 47.76 50.95 38.36
MIDAS 47.45 50.52 40.52 47.64 50.85 40.09 47.54 50.48 39.11

Note: The entries are calculated as 100× (N−1
∑

N
t=1 L̂i

H(α)), where L̂i
H(α) denotes the tick loss function

corresponding to model i, horizon H, and VaR level α = 5%. All models were estimated using realized
volatility (or, squared intraday returns) as explanatory variables.

The latter observations are confirmed by comparing the (expected) loss implied by
the 5% quantile (VaR) forecasts when the standardized returns are assumed to follow
normal distribution (Table 4). Similarly to the findings from the volatility forecasts,
there seems to be a little advantage to using either a recursive or a rolling scheme in
VaR forecasts, with only the TEF stock experiencing consistently albeit marginally
smaller losses across the different models and horizons.

Table 5. Evaluation of 5% VaR forecasts with normal distribution as a benchmark

Fixed Scheme Recursive Scheme Rolling Scheme
CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF

H = 1
AR 1.116 1.112 1.088 1.358 1.342 1.383 1.365 1.382 1.355
HAR 1.116 1.112 1.087 1.383 1.382 1.444 1.393 1.431 1.432
MIDAS 1.116 1.114 1.098 1.271 1.256 1.236 1.315 1.288 1.256
H = 5
AR 1.107 1.107 1.109 1.282 1.251 1.269 1.250 1.303 1.246
HAR 1.107 1.107 1.109 1.337 1.306 1.280 1.290 1.348 1.325
MIDAS 1.107 1.107 1.109 1.152 1.154 1.216 1.116 1.211 1.248
H = 10
AR 1.109 1.109 1.110 1.109 1.184 1.244 1.133 1.235 1.347
HAR 1.109 1.109 1.109 1.138 1.218 1.320 1.168 1.284 1.428
MIDAS 1.109 1.109 1.110 1.081 1.049 1.193 1.047 1.266 1.114
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We are now ready to evaluate the quantile forecasts. Table 5 reports the ratios of the
expected tick loss when either Student’s t or an empiricial distribution function (EDF)
is used to approximate the predictive distribution of standardized returns, relative to
the expected tick loss implied by the assumption of normal distribution. It turns out
that neither the Student’s t-distribution nor the EDF provide better VaR forecasts than
the normal distribution at a standard 5% level. Qualitatively similar results (available
on request) also hold for the 2.5% VaR forecasts. Note that we do not report the results
of the Diebold-Mariano test here as none of the ratios is smaller than one.

To assess the accuracy of the quantile forecasts with respect to the volatility fore-
casting model employed, in Table 6 we present the ratios of the tick loss implied by the
particular model (HAR, MIDAS) when either normal, Student’s t or an empirical dis-
tribution is used over the tick loss when the corresponding AR model is employed. In
other words, unlike in Table 5, we study the relative performance of the models under
different distributional assumptions.

Table 6. Evaluation of 5% VaR forecasts with AR model as a benchmark

Normal Dist. Student-t (8) Dist. Recursive EDF Rolling EDF
CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF CEZ KOB TEF

H = 1
HAR 1.003

(0.422)
1.009
(0.417)

0.963
(0.422)

1.003
(0.422)

1.010
(0.417)

0.962
(0.421)

1.021
(0.432)

1.039
(0.418)

1.005
(0.434)

1.024
(0.416)

1.045
(0.396)

1.017
(0.438)

MIDAS 1.020
(0.380)

1.013
(0.347)

1.001
(0.348)

1.021
(0.346)

1.014
(0.302)

1.011
(0.318)

0.954
(0.354)

0.947
(0.325)

0.894
(0.303)

0.983
(0.351)

0.944
(0.331)

0.927
(0.297)

H = 5
HAR 1.003

(0.401)
1.010
(0.394)

0.971
(0.401)

1.003
(0.401)

1.010
(0.394)

0.971
(0.401)

1.046
(0.444)

1.054
(0.435)

0.979
(0.417)

1.035
(0.395)

1.045
(0.390)

1.033
(0.372)

MIDAS 0.999
(0.315)

1.005
(0.235)

1.010
(0.333)

0.999
(0.317)

1.005
(0.236)

1.010
(0.336)

0.898
(0.304)

0.927
(0.196)

0.968
(0.384)

0.892
(0.342)

0.934
(0.322)

0.930
(0.351)

H = 10
HAR 1.000

(0.408)
1.008
(0.400)

0.973
(0.401)

1.000
(0.409)

1.008
(0.400)

0.972
(0.402)

1.026
(0.350)

1.037
(0.353)

1.032
(0.465)

1.031
(0.361)

1.048
(0.351)

1.031
(0.371)

MIDAS 0.996
(0.315)

1.005
(0.240)

1.002
(0.332)

0.996
(0.317)

1.005
(0.242)

1.002
(0.335)

0.971
(0.453)

0.890
(0.451)

0.961
(0.439)

0.921
(0.492)

1.030
(0.490)

0.828
(0.397)

Note: In the parentheses, we show the p-values of the Diebold-Mariano test for the null of no difference in
the predictive accuracy between two sets of quantile forecasts.

The results indicate that the choice of the model is generally independent of the
distribution assumed. In particular, AR model is the best model overall, irrespective of
whether normal, Student’s t or an empirical distribution is used to obtain the quantile
forecasts. To be more precise, neither the HAR nor the MIDAS models yield the VaR
forecasts which would be statistically more accurate than those coming from the AR
model. It is also worth noticing that the use of either a recursive or a rolling EDF seems
to improve the performance of the MIDAS model relative to the AR model. Neverthe-
less, in both cases, the differences in the predictive accuracy between the two sets of
forecasts are again statistically insignificant at any reasonable level of significance.
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A final note concerns the robustness of our results to the data that explicitly consid-
ers overnight information. Recall that this information was initially removed from the
sample to avoid potential distortions associated with lower liquidity during the non-
business hours, a practice that is otherwise common in the literature. Including the
overnight returns increases the number of observations in the sample to 31,444.

The results from the analysis based on the dataset extended with overnight infor-
mation (available on request) are quantitatively similar to the ones obtained previously.
In particular, the expected tick loss calculations confirm a superior performance of the
normal distribution relative to the other distributional assumptions. In addition and as
in the earlier analysis, a simple autoregressive model is found to be the best model
overall, regardless of the distribution employed to recover the quantile forecasts.

6. Conclusion

Inspired in recent volatility forecasting literature, our study makes use of the infor-
mation inherent in the high-frequency intraday returns to forecast the quantiles of the
distributions of future returns at different time horizons.

We follow a standard two-stage approach to the problem of construction of quantile
forecasts: one in which we first obtain the forecasts of (the standard deviation of)
realized volatility and next use these to generate the quantile forecasts via either a
specific assumption on the distribution of expected future returns or using an empirical
distribution of the expected future returns.

We employ the volatility forecasting models that make explicit use of the infor-
mation intrinsic to intraday returns either by modeling the (non-parametric) realized
volatility as a linear function of its own aggregate values (HAR model) or as a function
of the higher-frequency intraday returns (MIDAS model). Accurate volatility forecasts
obtained from these models are essential for the construction of the VaR forecasts as is
the method of calculating the predictive distribution for the expected future returns.

Our findings relate to the intraday returns on three of the most liquid stocks traded
on the Prague Stock Exchange. We show that a simple autoregressive model of realized
volatility together with an assumption that the expected future returns follow a normal
distribution leads to the quantile that are at least as accurate as those obtained from the
other models employed. In particular, the superior performance holds true for all three
stocks at either 5% or 2.5% VaR levels, regardless of the forecast horizon analyzed.
Furthermore, the results from the quantile forecasts obtain despite the fact that HAR
models seem to perform better than either AR or MIDAS models in the out-of-sample
forecasting exercise. The findings from the analysis based on the data that incorporate
overnight information confirm the former results.
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Clements, M. P., Galvâo, A. B. and Kim, J. H. (2008). Quantile Forecasts of Daily
Exchange Rate Returns from Forecasts of Realized Volatility. Journal of Empirical
Finance, 15, 729–750.

Corsi, F. (2009). A Simple Approximate Long Memory Model of Realized Volatility.
Journal of Financial Econometrics, 7(2), 174–196.

Diebold, F. X. and Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of
Business and Economic Statistics, 13(3), 253–263.

Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A Long Memory Property of Stock
Market Returns and a New Model. Journal of Empirical Finance, 1, 83–106.

Forsberg, L. and Ghysels, E. (2007). Why Do Absolute Returns Predict Volatility So
Well? Journal of Financial Econometrics, 5, 31–67.

Ghysels, E., Santa-Clara, P. and Valkanov, R. (2004). The MIDAS Touch: Mixed
Data Sampling Regression Models. Montreal, Center for Interuniversity Research and
Analysis on Organizations, Working Paper No. 20.

Ghysels, E., Santa-Clara, P. and Valkanov, R. (2005). There is a Risk-Return Trade-Off
after All. Journal of Financial Economics, 76, 509–548.

Ghysels, E., Santa-Clara, P. and Valkanov, R. (2006). Predicting Volatility: Getting the
Most out of Return Data Sampled at Different Frequencies. Journal of Econometrics,
131(1–2), 59–95.

Ghysels, E., Sinko, A. and Valkanov, R. (2007). MIDAS Regressions: Further Results
and New Directions. Econometric Reviews, 26(1), 53–90.

Giacomini, R. and Komujer, I. (2005). Evaluation and Combination of Conditional
Quantile Forecasts. Journal of Business and Economics Statistics, 23(4), 416–431.

Hanousek, J. and Podpiera, R. (2004). Czech Experience with Market Maker Trading
System. Economic Systems, 28(2), 177–191.

AUCO Czech Economic Review, vol. 4, no. 3 312



V. Bubák

Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk.
3rd ed., New York, McGraw-Hill.

Liu, C. and Maheu, J. M. (2005). Modeling and Forecasting Realized Volatility: The
Role of Power Variation. Toronto, University of Toronto, mimeo.

Patton, A. J. (2006). Volatility Forecast Comparison Using Imperfect Volatility Prox-
ies. Sydney, University of Technology, Quantitative Finance Research Centre, Re-
search Paper No. 175.
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Appendix

Table A1. In-sample regression estimates

CEZ KOB TEF
Model Cf. H = 1 H = 5 H = 10 H = 1 H = 5 H = 10 H = 1 H = 5 H = 10

AR α0 0.060a
(0.0127)

1.042a
(0.0168)

1.435a
(0.0165)

0.071a
(0.0133)

1.043a
(0.0173)

1.435a
(0.0178)

0.015
(0.0138)

0.985a
(0.0221)

1.380a
(0.0249)

α1 0.343a
(0.0261)

0.181a
(0.0162)

0.143a
(0.0142)

0.279a
(0.0276)

0.185a
(0.020)

0.156a
(0.0157)

0.401a
(0.0297)

0.283a
(0.0224)

0.226a
(0.0222)

α2 0.105a
(0.0251)

0.088a
(0.0130)

0.081a
(0.0112)

0.141a
(0.0271)

0.126a
(0.014)

0.104a
(0.0114)

0.134a
(0.0268)

0.151a
(0.0176)

0.130a
(0.0179)

α3 0.011
(0.0272)

0.055a
(0.0132)

0.062a
(0.0106)

0.082a
(0.0267)

0.086a
(0.014)

0.075a
(0.0109)

0.100a
(0.0254)

0.128a
(0.0169)

0.118a
(0.0172)

α4 0.074b
(0.0260)

0.078a
(0.0134)

0.071a
(0.0106)

0.080a
(0.0248)

0.070a
(0.014)

0.067a
(0.0112)

0.135a
(0.0276)

0.120a
(0.0160)

0.120a
(0.0166)

α5 0.102a
(0.0231)

0.080a
(0.0158)

0.073a
(0.0141)

0.092a
(0.0258)

0.075a
(0.017)

0.063a
(0.0142)

0.115a
(0.0235)

0.109a
(0.0200)

0.130a
(0.0202)

HAR β0 −0.004
(0.0161)

0.970a
(0.0207)

1.374a
(0.0205)

−0.008
(0.0179)

0.962a
(0.0225)

1.363a
(0.0229)

−0.071a

(0.0167)
0.892a
(0.0288)

1.291a
(0.0328)

β1 0.269a
(0.0313)

0.103a
(0.0195)

0.070a
(0.0162)

0.157a
(0.0316)

0.074a
(0.0196)

0.059a
(0.0162)

0.250a
(0.0307)

0.139a
(0.0239)

0.085a
(0.0217)

β2 0.273a
(0.0518)

0.266a
(0.0531)

0.271a
(0.0499)

0.452a
(0.0559)

0.385a
(0.0542)

0.328a
(0.0508)

0.397a
(0.0535)

0.357a
(0.0607)

0.356a
(0.0665)

β3 0.193a
(0.0531)

0.236a
(0.0634)

0.183a
(0.0601)

0.125a
(0.0636)

0.206c
(0.0718)

0.190a
(0.0683)

0.320a
(0.0593)

0.386a
(0.0746)

0.397a
(0.0754)

MIDAS µH 0.833a
(0.1100)

1.608a
(0.1695)

1.932a
(0.1957)

0.887a
(0.1156)

1.707a
(0.1213)

2.007a
(0.1364)

1.075a
(0.0416)

1.911a
(0.0619)

2.216a
(0.0766)

φH 0.635a
(0.1042)

0.485a
(0.1700)

0.429b
(0.1991)

0.695a
(0.1200)

0.578a
(0.1177)

0.498a
(0.1326)

0.906a
(0.0337)

0.803a
(0.0457)

0.733a
(0.0562)

θ1 −0.107a

(0.0241)
−0.084
(0.0654)

−0.075
(0.0954)

−0.088a

(0.0329)
−0.039
(0.0235)

−0.039
(0.0304)

−0.104a

(0.0150)
−0.059a

(0.0123)
−0.053a

(0.0142)

θ2 0.001a
(0.0002)

0.001
(0.0008)

0.001
(0.012)

0.001b
(0.0004)

0.000
(0.0003)

0.000
(0.0004)

0.001a
(0.0002)

0.001a
(0.0001)

0.001a
(0.0002)

Note: The dependent variable for all forecast horizons H is the logarithm of the square root of realized
volatility. The regressors are based on squared returns. Shown in parentheses are Newey-West HAC stan-
dard errors. The coefficient estimates significant at 1, 5 and 10 percent are denoted with superscripts a, b,
and c, respectively. The in-sample period runs from January 3, 2000 to January 25, 2007 (1,750 obs.)
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