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On Some Properties of Cost Allocation Rules
in Minimum Cost Spanning Tree Problems
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Abstract We consider four cost allocation rules in minimum cost spanning tree problems. These
rules were introduced by Bird (1976), Dutta and Kar (2004), Kar (2002), and Feltkamp, Tijs and
Muto (1994), respectively. We give a list of desirable properties and we study which properties
are satisfied by these rules.
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1. Introduction

In this paper we study minimum cost spanning tree problems(mcst p). Consider that a
group of agents, located at different geographical places,want some particular service
which can only be provided by a common supplier, called the source. Agents will be
served through connections which entail some cost. However, they do not care whether
they are connected directly or indirectly to the source.

There are many economic situations that can be modeled in this way. For instance,
several towns may draw power from a common power plant, and hence have to share
cost of the distribution network. This example appears in Dutta and Kar (2004).

Bergantĩnos and Lorenzo (2004, 2005) studied a real situation where villagers
should pay the cost of constructing pipes from their respective houses to a water sup-
plier. Some houses in a valley sited in Galicia (Spain), required access to a water dam
built by the local authority. The cost of the pipes connectedto the houses water sup-
ply required villagers to pay for it. Some villagers paid forthe pipes which would
connect them to the dam. After the commencement of the system, most of the other
villagers decided to connect to the network. This becomes a source of dispute as the
latter villagers want usage of the existing network, paid bythe former villagers creat-
ing a discompensation to former villagers. This situation could have been avoided by
using a prior sharing cost rule.
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The literature onmcstpstarts by defining algorithms for constructing minimum
cost spanning trees (mt). Other important issue is how to allocate the cost associated
with themt among the agents.

Bird (1976) proposed a cost allocation rule (we call itB). B has been axiomati-
cally characterized in Dutta and Kar (2004), Gómez-Ŕua and Vidal-Puga (2005) and
Özsoy (2006). Bird (1976) associated a coalitional game with anymcstp. Kar (2002)
characterized the Shapley value of this coalitional game asan allocation rule formc-
stp. We denote this rule asK. Dutta and Kar (2004) proposed and characterized a
new rule, which we denote asDK. Finally, Feltkamp, Tijs and Muto (1994) introduced
a rule formcstp, we call it FTM. This rule has been axiomatically characterized in
Brânzei, Moretti, Norde and Tijs (2004), and in Bergantiños and Vidal-Puga (2005,
2007a, 2007b).

In Bergantĩnos and Vidal-Puga (2007a), we gave a list of desirable properties that
a fair rule should satisfy. Most of these properties are already known in the literature
of mcstp, others are defined applying well-known principles tomcstp. We proved that
FTM satisfies most of these properties. In this paper we study which of these properties
are satisfied by the above rules.

In Bergantĩnos and Vidal-Puga (2007a), we defined the property ofIndependence
of Other Costs(IOC). This property says that the amount paid by agenti depends only
on the cost of the arcs to which he belongs. However, no rule satisfies IOC. In this
paper we introduce two weaker versions ofIOC. Independence of Small Costs(ISC)
says that the amount paid by each agenti does not depend on the cost of the arcs that
are cheaper than agenti’s cheapest arc.Independence of Large Costs(ILC) says that
the amount paid by each agenti does not depend on the cost of the arcs that are more
expensive than agenti’s most expensive arc. We prove thatB satisfiesISC but fails
ILC. K satisfiesISCbut failsILC. DK fails both. Nevertheless,FTM satisfies both.

The paper is organized as follows. In Section 2 we introducemcstp, along with the
rules and properties considered in the paper. In Section 3 wepresent the results. In
Section 4 we provide some concluding remarks.

2. The minimum cost spanning tree problem

This section is divided in three subsections. In the first subsection, we introduce the
problem. In the second subsection, we introduce the three rules of the literature. Fi-
nally, in the third subsection, we present the properties.

2.1 The problem

Let N = {1,2, ...} be the set of all possible agents. LetΠN be the set of all permuta-
tions over the finite setN ⊂N . Givenπ ∈ ΠN, let Pre(i,π) denote the set of elements
of N which come beforei in the order given byπ, i.e.Pre(i,π)= { j ∈ N | π ( j) < π (i)}.
GivenS⊂ N, let πS denote the order induced byπ among the agents inS.

We are interested in networks whose nodes are elements of a set N0 = N∪{0},
whereN ⊂ N is finite and 0 is a special node called thesource. Usually we take
N = {1, ...,n} .
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A cost matrix C= (ci j )i, j∈N0
on N represents the cost of direct link between any

pair of nodes. We assume thatci j = c ji ≥ 0 for eachi, j ∈ N0 andcii = 0 for each
i ∈ N0. Sinceci j = c ji we work with undirected arcs, i.e.(i, j) = ( j, i). We denote the
set of all cost matrices overN asC N. GivenC, C′ ∈ C N we sayC≤C′ if ci j ≤ c′i j for
all i, j ∈ N0.

A minimum cost spanning tree problem, briefly anmcstp, is a pair(N0,C) where
N ⊂N is the finite set of agents, 0 is the source, andC∈ C N is the cost matrix. Given
anmcstp(N0,C), we define themcstpinduced byC in S⊂ N as(S0,C).

A network goverN0 is a subset of{(i, j) |i, j ∈ N0} . The elements ofg are called
arcs. Given a networkg and a pair of nodesi and j, apathfrom i to j in g is a sequence
of different arcs{(ih−1, ih)}

l
h=1 satisfying(ih−1, ih) ∈ g for all h ∈ {1,2, ..., l}, i = i0,

and j = i l .
A tree is a network satisfying that for eachi ∈ N there exits a unique path fromi to

the source. Ift is a tree we usually writet =
{(

i0, i
)}

i∈N, wherei0 represents the first
node in the unique path int from i to 0.

Let G N denote the set of all networks overN0. Let G N
0 denote the set of all net-

works, where each agenti ∈ N is connected to the source, i.e. there exists a path fromi
to 0 in the network. Given anmcstp(N0,C) andg∈ G N, we define thecostassociated
with g as

c(N0,C,g) = ∑
(i, j)∈g

ci j .

When there are no ambiguities, we writec(g) or c(C,g) instead ofc(N0,C,g). A
minimum cost spanning treefor (N0,C), briefly anmt, is a treet ∈ G N

0 such thatc(t) =
ming∈G N

0
c(g). It is well-known that anmt exists, even though it does not necessarily

have to be unique. Given anmcstp(N0,C) , we denote the cost associated with anymt
t in (N0,C) asm(N0,C).

Given anmcstp, Prim (1957) provided an algorithm for building anmt. The idea
of this algorithm is simple: starting from the source we construct a network by se-
quentially adding arcs with the lowest cost and without introducing cycles. Formally,
Prim’s algorithm is defined as follows. We start withS0 = {0} andg0 = /0.

Stage1 : Take an arc(0, i) such thatc0i = min j∈N
{

c0 j
}

. If there are several arcs
satisfying this condition, select one of them. Now,S1 = {0, i} andg1 = {(0, i)}.

Stage p+1: Assume that we have definedSp ⊂ N0 and gp ∈ G N. We now define
Sp+1 and gp+1. Take an arc( j, i) with j ∈ Sp and i ∈ N0\Sp such thatc ji =
mink∈Sp,l∈N0\Sp {ckl}. If there are several arcs satisfying this condition, select
one of them. Now,Sp+1 = Sp∪{i} andgp+1 = gp∪{( j, i)}.

This process is completed inn stages. We say thatgn is a tree obtained following
Prim’s algorithm. Notice that this algorithm leads to a tree, but that this is not always
unique. We use Prim’s algorithm to prove the following result.

Lemma 1. A tree t is an mt if and only if for all S N0, S 6= /0, there exists(i, j) ∈ t
with i ∈ S, j∈ N0\S such that ci j = mink∈S,l∈N0\S{ckl}.
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Proof. (⇒) Let S N0 such thatS 6= /0. Let (i, j) be an arc withi ∈ S, j ∈ N0\Sand
ci j = mink∈S,l∈N0\S{ckl}. Suppose(i, j) /∈ t. We consider the graphg = t ∪{(i, j)}.
Sincet is a tree, there exists a path int from i to j. In this path, there exists an arc
(i′, j ′) ∈ t with (i, j) 6= (i′, j ′), i′ ∈ Sand j ′ ∈ N0\S. Thus,t ′ = g\{(i′, j ′)} is a tree in
(N0,C). Sincet is anmt, ci′ j ′ ≤ ci j . Hence,ci′ j ′ = mink∈S,l∈N0\S{ckl}.
(⇐) We prove thatt is anmt proving that it can be obtained through Prim’s algorithm.
There exists(0, i1) ∈ t with i1 ∈ N such thatc0i1 = min j∈N

{

c0 j
}

. Thus,(0, i1) is an
eligible arc in the first step of Prim’s algorithm andS1 = {0, i1}. There exists

(

i02, i2
)

∈ t
with i02 ∈ S1 and i2 ∈ N\{i1} such thatci02i2

= mink∈S1,l∈N0\S1 {ckl}. Thus,
(

i02, i2
)

is
again eligible following Prim’s algorithm. Following thisreasoning, we deduce thatt
can be computed following Prim’s algorithm. Hence,t is anmt. �

A game with transferable utility, TU game, is a pair(N,v) wherev : 2N → R

satisfiesv(∅) = 0. Sh(N,v) denotes the Shapley value (Shapley, 1953) of(N,v). Bird
(1976) associated aTU game(N,vC) with eachmcstp(N0,C). For each coalition
S⊂ N,

vC (S) = m(S0,C) .

This is a “pessimistic” approach, because the players inS assume that the rest of the
players are not present. An alternative approach is to assume that the rest of the players
are already connected and thus connection is possible through them. In Bergantiños
and Vidal-Puga (2007b), we associated an “optimistic”TU game

(

N,v+
C

)

with each
mcstp(N0,C). For each coalitionS⊂ N,

v+
C (S) = m

(

S0,C
+(N\S)

)

,

wherec+(N\S)
i j = ci j for all i, j ∈ Sandc+(N\S)

i0 = min j∈N0\S
{

ci j
}

for all i ∈ S.

2.2 Rules

One of the most important issues addressed in the literatureaboutmcstpis how to
divide the cost of connecting agents to the source. Acost allocation ruleis a function
ψ such thatψ (N0,C)∈RN for eachmcstp(N0,C) and∑i∈N ψi (N0,C) = m(N0,C). As
usual,ψi (N0,C) represents the cost allocated to agenti.

We will now introduce four rules. TheBird rule (Bird 1976) and Dutta-Kar’s rule
(Dutta and Kar 2004) are defined through Prim’s algorithm. Wefirst assume that there
is a uniquemt t.

Given i ∈ N, let i0 be the first node in the unique path int from i to the source. The
Bird rule (B) is defined for eachi ∈ N as

Bi (N0,C) = ci0i .

The idea of this rule is simple. Agents connect sequentiallyto the source following
Prim’s algorithm and each agent pays the corresponding connection cost.

Dutta-Kar’s rule (DK) is defined in a more elaborate way. Assume that the agents,
according with Prim’s algorithm, connect in the order 1,2, ...,n. First agent 1 con-
nects to the source. We definep1 = c01. Now agent 2 connects to 20 wherec202 =
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min{c02,c12} . We takex1 = min
{

p1,c202

}

and p2 = max
{

p1,c202

}

. Now agent 3
connects to 30 wherec303 = min{c03,c13,c23} . We takex2 = min

{

p2,c303

}

andp3 =

max
{

p2,c303

}

. This process continue until we reach agentn. In this case we take
xn = max

{

pn−1,cn0n

}

. Then, the final allocation is given byx, i.e., for all i ∈ N

DKi (N0,C) = xi .

Assume now there exists more than onemt. In this case, the Bird rule and Dutta-
Kar’s rule can be defined as an average of the trees associatedwith Prim’s algorithm.
Dutta and Kar (2004) proceeded as follows. Givenπ ∈ ΠN they definedBπ (N0,C) as
the allocation obtained when they applied the previous protocol to(N0,C) and solved
the indifferences by selecting the first agent given byπ. Then they defined

B(N0,C) =
1
n! ∑

π∈ΠN

Bπ (N0,C) .

They definedDK (N0,C) in a similar way.
The game theory approach can also be used for defining rules. TheKar rule (K) is

defined as
K (N0,C) = Sh(N,vC) .

In Bergantĩnos and Vidal-Puga (2007b), we proved thatFeltkamp-Tijs-Muto’s rule
(FTM) can be defined as

FTM(N0,C) = Sh
(

N,v+
C

)

.

2.3 Properties

We now introduce several properties of rules. For a detaileddiscussion of these proper-
ties see, for instance, Bergantiños and Vidal-Puga (2007a). Given a ruleψ, we consider
the following properties:

Core Selection (CS) For allmcstp(N0,C) and allS⊂ N, we have

∑
i∈S

ψi (N0,C) ≤ m(S0,C) .

CSsays that no group of agents can be better off by building their own network. In
particular, this property prevents some agents to subsidy others.

Cost Monotonicity (CM) For allmcstp(N0,C) and(N0,C′) such thatci j < c′i j for some
i ∈ N, j ∈ N0 and otherwiseckl = c′kl , we have

ψi (N0,C) ≤ ψi
(

N0,C
′
)

.

CM says that a decrease in the cost of a link cannot harm their adjacent agents. In
particular, this property prevents the agents to take advantage by reporting false con-
nection costs.
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Strong Cost Monotonicity (SCM)] For all mcstp(N0,C) and(N0,C′) such thatC≤C′,
we have

ψ (N0,C) ≤ ψ
(

N0,C
′
)

.

SCMsays that a decrease in the cost of a link cannot harm any agent. SCM is called
solidarity in Bergantĩnos and Vidal-Puga (2007a).

Population Monotonicity (PM) For all mcstp(N0,C), S⊂ N, andi ∈ S, we have

ψi (N0,C) ≤ ψi (S0,C) .

PM says that no agent is worse off with the entrance of new agents. In particular, this
property prevents incentives to veto the entrance of new agents.

Continuity (CON) For all N ⊂ N , ψ (N0, ·) is a continuous function ofC N. CON
says that small changes in the costs do not mean a big change inthe allocation.

Positivity (POS) For all mcstp(N0,C) and alli ∈ N, we have

ψi (N0,C) ≥ 0.

POSsays that no agent can make a profit.

Separability (SEP) For allmcstp(N0,C) andS⊂ N satisfyingm(N0,C) = m(S0,C)+
m((N\S)0 ,C), we have

ψi (N0,C) =

{

ψi (S0,C) if i ∈ S
ψi ((N\S)0 ,C) if i ∈ N\S.

SEPsays that if two groups of agents can connect to the source independently, then
their respective allocations should also be independent.

Symmetry (SYM) For all mcstp(N0,C) and all pair of symmetric agentsi, j ∈ N,

ψi (N0,C) = ψ j (N0,C) .

We say thati, j ∈ N aresymmetricif for all k∈ N0\{i, j}, cik = c jk.

Independence of Other Costs (IOC) For all mcstp(N0,C) and(N0,C′), and alli ∈ N
such thatci j = c′i j for all j ∈ N0\{i}, we have

ψi (N0,C) = ψi
(

N0,C
′
)

.

IOC says that an agent’s allocation should only depend on the cost of their adjacent
links.

Equal Share of Extra Costs (ESEC) Let (N0,C) and (N0,C′) be two mcstp. Let
c0,c′0 ≥ 0. Assumingc0i = c0 andc′0i = c′0 for all i ∈ N, c0 < c′0, andci j = c′i j ≤ c0 for
all i, j ∈ N, we have

ψi
(

N0,C
′
)

= ψi (N0,C)+
c′0−c0

n
.

ESECsays that the agents should share equally any extra cost of direct connection to
the source, when it is the more expensive one and it is equal for all the agents. We say
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that twomcstp(N0,C) and(N0,C′) aretree-equivalentif there exists a treet such that,
firstly, t is anmt for both(N0,C) and(N0,C′), and secondly,ci j = c′i j for all (i, j) ∈ t.

Independence of Irrelevant Trees (IIT ) If two mcstp(N0,C) and(N0,C′) are tree-
equivalent,

ψ (N0,C) = ψ
(

N0,C
′
)

.

IIT says that anymt provides all the relevant information.

In Bergantĩnos and Vidal-Puga (2007a), we proved that there is no rule satisfying
IOC. We now introduce two properties weaker thanIOC.

Independence of Small Costs(ISC) Let (N0,C) and(N0,C′) be twomcstpandi ∈ N
satisfying three conditions: First,cik = c′ik for all k ∈ N0. Second, givenj,k ∈ N0,
thenc jk ≤ cmin

i if and only if c′jk ≤ cmin
i wherecmin

i = mink∈N0\{i} {cik} . Third, given

j,k∈ N0 such thatcmin
i < c jk then,c′jk = c jk. Then,

ψi (N0,C) = ψi
(

N0,C
′
)

.

ISCsays that the amount paid by agenti does not depend on the cost of the arcs cheaper
than his cheapest arc.

Independence of Large Costs(ILC) Let (N0,C) and(N0,C′) be twomcstpandi ∈ N
satisfying three conditions: First,cik = c′ik for all k ∈ N0. Second, givenj,k ∈ N0,
thencmax

i ≤ c jk if and only if cmax
i ≤ c′jk wherecmax

i = maxk∈N0\{i} {cik}. Third, given
j,k∈ N0 such thatc jk < cmax

i then,c′jk = c jk. Then,

ψi (N0,C) = ψi
(

N0,C
′
)

.

ILC says that the amount paid by agenti does not depend on the cost of the arcs larger
than his most expensive arc.

In the next proposition we summarize the relations among these properties. Parts
(i) and (ii) appear in Bergantiños and Vidal-Puga (2007a). Part (iii) is proved in this
paper.

Proposition 1.

(i) SCM implies CM and IIT .
(ii) PM implies CS and SEP.

(iii) IIT implies ILC.

Proof. (iii) Assume thatψ is a rule satisfyingIIT and let(N0,C), (N0,C′) and i ∈ N
be as in the definition ofILC. We first prove the following claim:

Claim. If there existj,k∈ N0 anda > 0 such that, for alll ,m∈ N0,

clm =

{

c′lm−a if (l ,m) = ( j,k)
c′lm otherwise

andcmax
i ≤ c jk, thenψi (N0,C) = ψi (N0,C′) .
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Sincecmax
i ≤ c jk < c′jk, we deduce thati 6= j and i 6= k. Let t =

{(

l0, l
)}

l∈N be
an mt in (N0,C) . If ( j,k) /∈ t, thent is also anmt in (N0,C′). Sinceψ satisfiesIIT ,
ψi (N0,C) = ψi (N0,C′). If ( j,k) ∈ t, we can assume, without loss of generality, that
j = k0. Two cases are possible:

1. Link ( j,k) is not in the unique path int from i to 0. We definet∗ = (t \{( j,k)})∪
{(i,k)}. It is trivial to see thatt∗ is a tree satisfying that

c(N0,C, t∗)−c(N0,C, t) = cik −c jk.

Sincecmax
i ≤ c jk we deduce thatc(N0,C, t∗) ≤ c(N0,C, t) . Thus,t∗ is anmt in

both(N0,C) and(N0,C′). Sinceψ satisfiesIIT , ψi (N0,C) = ψi (N0,C′).

2. Link ( j,k) is in the unique path int from i to 0. We definet∗ = (t \{( j,k)})∪
{(0, i)}. Using similar arguments to those used in the first case we canconclude
thatψi (N0,C) = ψi (N0,C′).

This concludes the proof of the claim.

Let Ai =
{(

i1l , i
2
l

)}p
l=1 be the set of arcs satisfying thatci1l i2l

6= c′
i1l i2l

. We takeC0 = C.

For all l = 1, ..., p we define themcstp
(

N0,Cl
)

wherecl
i1l i2l

= c′
i1l i2l

andcl
lm = cl−1

lm oth-

erwise. For eachl = 1, ..., p we take( j,k) =
(

i1l , i
2
l

)

. Under the claim,ψi
(

N0,Cl−1
)

=

ψi
(

N0,Cl
)

for all l = 1, .., p. SinceC0 = C andCp = C′, ψ satisfiesILC. �

3. Properties of the rules

In this section we study which properties the rules satisfy.Some of the results are
already known in the literature. In this case we only refer tothe paper in which it is
proved.

Theorem 1.

(i) B satisfies CS, POS, SYM, ESEC, and ISC. B does not satisfy CM, SCM, PM,
CON, SEP, IIT , and ILC.

(ii) K satisfies CM, CON, SYM, ESEC, and ISC. K does not satisfy CS, SCM, PM,
POS, SEP, IIT , and ILC.

(iii) DK satisfies CS, CM, POS, and SYM. DK does not satisfy SCM, PM, CON,
SEP, ESEC, IIT , ISC, and ILC.

(iv) FTM satisfies CS, CM, SCM, PM, CON, POS, SEP, SYM, ESEC, IIT , ISC, and
ILC.

Proof. (i)
B satisfiesCS. See Bird (1976).

B satisfiesPOS. It is trivial.
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B satisfiesSYM. Let i, j be two symmetric agents in(N0,C) . Givenπ ∈ ΠN we define
π i j ∈ ΠN such thatπ i j (i) = π ( j) , π i j ( j) = π (i) , andπ i j (k) = π (k) for all k ∈ N \

{i, j} . It is trivial to see thatBπ
i (N0,C) = Bπ i j

j (N0,C). Thus,

Bi (N0,C) =
1
n! ∑

π∈ΠN

Bπ
i (N0,C) =

1
n! ∑

π∈ΠN

Bπ i j

j (N0,C)

=
1
n! ∑

π∈ΠN

Bπ
j (N0,C) = B j (N0,C) .

B satisfiesESEC. Let(N0,C) and(N0,C′) be as in the definition ofESEC. It is straight-
forward to see that for allπ ∈ ΠN,

Bπ
i

(

N0,C
′
)

=

{

Bπ
i (N0,C)+(c′0−c0) if π (i) = 1

Bπ
i (N0,C) otherwise.

Now it is not difficult to check thatB satisfiesESEC.

B satisfiesISC. Let (N0,C), (N0,C′), and i ∈ N be as in the definition ofISC. It is
enough to prove thatBπ

i (N0,C) = Bπ
i (N0,C′) for eachπ ∈ ΠN.

We first assume that there exits a unique arc( j,k) such thatc′jk 6= c jk. This meansi 6= j

and i 6= k. We can assume without loss of generality thatc′jk < c jk ≤ cmin
i . When we

computeBπ (N0,C) (resp.Bπ (N0,C′)) following Prim’s algorithm, the agents connect
sequentially to the source in a specific order. We denote thisorder asπ∗ (resp. π∗′).
We consider three cases:

1. π∗ (i) < min{π∗ ( j) ,π∗ (k)}. Thus,Pre(i,π∗) = Pre(i,π∗′). Hence,

Bπ
i (N0,C) = Bπ

i

(

N0,C
′
)

= min
l∈Pre(i,π∗)

{cil } .

2. min{π∗ ( j) ,π∗ (k)} < π∗ (i) < max{π∗ ( j) ,π∗ (k)}. We assume without loss of
generality thatπ∗ ( j) < π∗ (i) < π∗ (k). We know thatBπ

i (N0,C) = ci0i . Thus,
cmin

i ≤ ci0i ≤ c jk. Sincec jk ≤ cmin
i we have thatc jk = ci0i andBπ

i (N0,C) = cmin
i .

Sincec′jk < c jk, Pre(i,π∗) ⊂ Pre(i,π∗′). Thus,Bπ
i (N0,C′) ≤ Bπ

i (N0,C) = cmin
i .

Moreover,Bπ
i (N0,C′) = minl∈Pre(i,π∗′) {cil } ≤ cmin

i . Thus,Bπ
i (N0,C′) = cmin

i .

3. max{π∗ ( j) ,π∗ (k)} < π∗ (i) . Thus,Pre(i,π∗) = Pre(i,π∗′). Hence,

Bπ
i (N0,C) = Bπ

i

(

N0,C
′
)

= min
l∈Pre(i,π∗)

{cil } .

Assume now that there are several arcs( j,k) such thatc′jk 6= c jk. Let A=
{(

jh1, jh2
)}p

h=1

be the set of those arcs. We consider the family
{(

N0,Ch
)}p

h=0 such thatC0 = C and

ch
kl =

{

c′
jh1 jh2

if (k, l) =
(

jh1, jh2
)

ch−1
kl otherwise
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for all h = 1, ..., p. Notice that for allh = 1, ..., p,
(

N0,Ch−1
)

,
(

N0,Ch
)

, and i ∈ N
are as in the definition ofISC. Moreover,

(

jh1, jh2
)

is the unique arc with different cost
in bothmcst p. Thus,Bπ

i

(

N0,Ch−1
)

= Bπ
i

(

N0,Ch
)

for all h = 1, ..., p. SinceCp = C′,
Bπ

i (N0,C) = Bπ
i (N0,C′).

B does not satisfyCM. See Dutta and Kar (2004).

B does not satisfySCM. SinceB does not satisfyCM, under Proposition 1 (i), the
result holds.

B does not satisfyCON.
Example 1. Let (N0,Cx) be such thatN = {1,2} , x≥ 0, and

Cx =





0 10 10+x
10 0 2

10+x 2 0



 .

B(N0,Cx) = (10,2) whenx > 0 butB
(

N0,C0
)

= (6,6) .

B does not satisfySEP.
Example 2. Let (N0,C) be such thatN = {1,2,3}, S= {1,2}, and

C =









0 3 10 1
3 0 1 10
10 1 0 3
1 10 3 0









.

It is clear thatm(S0,C) + m((N\S)0 ,C) = m(N0,C). However,B(N0,C) = (2,2,1)
andB(S0,C) = (3,1).

B does not satisfyPM. SinceB does not satisfySEP, under Proposition 1 (ii), the
result holds.

B does not satisfyILC. In Example 1,
(

N0,C0
)

,
(

N0,C2
)

and 1 are as in the definition
of ILC. Nevertheless,B1

(

N0,C0
)

= 6 andB1
(

N0,C2
)

= 10.

B does not satisfyIIT. SinceB does not satisfyILC, under Proposition 1 (iii), the
result holds.

(ii)

K satisfiesCM. See Dutta and Kar (2004).

K satisfiesCON. SinceK (N0,C) = Sh(N,vC) andvC is a continuous function onC,
the result holds.
K satisfiesSYM. It is trivial to see that if agentsi and j are symmetric in(N0,C),
they are symmetric in(N,vC) . SinceK (N0,C) = Sh(N,vC) and the Shapley value is
symmetric, the result holds.
K satisfiesESEC. Let (N0,C) and(N0,C′) be as in the definition ofESEC. It is easy
to see thatvC′ (S) = vC (S)+(c′0−c0) for all S⊂ N. Thus,

Ki
(

N0,C
′
)

= Shi (N,vC′) = Shi (N,vC)+
c′0−c0

n

= Ki (N0,C)+
c′0−c0

n
.
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K satisfiesISC. Let (N0,C) ,(N0,C′) and i ∈ N be as in the definition ofISC. We
assume that there exists a unique arc( j,k) such thatc jk 6= c′jk. The general case can
be derived from this case using similar arguments to those used with B. We assume,
without loss of generality, thatc′jk < c jk.
SinceK (N0,C) = Sh(N,vC) andvC (S) = m(S0,C) for all S⊂ N, it is enough to prove
that

m(S0,C)−m(S0\{i} ,C) = m
(

S0,C
′
)

−m
(

S0\{i} ,C′
)

,

wheni ∈ S. We prove it only when{ j,k} ⊂ S. The other cases are trivial.
Let t =

{(

l0, l
)}

l∈S be anmt in (S0,C). We defineR as the set of agents who are
adjacent to agenti and connect to the source (int) through agenti. Namely,

R=
{

l ∈ S|l0 = i
}

.

We assume, without loss of generality, thatR= {1,2, ..., r} (R= /0 is possible).
Given l ∈ R, we defineRl as the set of agents inS who connect to the source int
through agentl . Namely,Rl is the set of agentsp∈ Ssuch that agentl is in the unique
path int from p to 0. We considerl ∈ Rl . Moreover, we define

R0 = (S0\{i})\
⋃

l∈R

Rl .

For eachl ∈ R, we define themcstp
((

Rl \{l}
)

0 ,C+l
)

as themcstpthat results form
(

Rl ,C
)

when agentl connects to the source and the rest of the agents can connect
through him. Formally, for allp∈ Rl \ {l}, c+l

0p = min
{

cl p,c0p
}

andc+l
qp = cqp when

q 6= 0.
It is not difficult to check that

m(S0,C) = m
(

R0,C
)

+ ∑
l∈R

m
((

Rl \{l}
)

0
,C+l

)

+ ∑
l∈R

cil +ci0i .

Let p∗0 ∈ R0 andp1 ∈
⋃

l∈R
Rl be such that their connection cost is minimal. Namely,

cp∗0p1
= min

{

cqs|q∈ R0 ands∈
⋃

l∈R

Rl

}

.

We can assume, without loss of generality, thatp1 ∈ R1. Let p∗1 ∈ R0∪R1 and p2 ∈
⋃

l∈R\{1}
Rl be such that their connection cost is minimal, hence

cp∗1p2
= min







cqs : q∈ R0∪R1 ands∈
⋃

l∈R\{1}

Rl







.

Again, we can assume, without loss of generality, thatp2 ∈ R2.
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Following this procedure, we obtain
{(

p∗l−1, pl
)}

l∈R such thatpl ∈Rl for all l = 1, .., r.
Under Lemma 1,

t∗ =

(

t \

(

{(

i0, i
)}

∪
⋃

l∈R

{(i, l)}

)

)

∪
{(

p∗l−1, pl
)}

l∈R

is anmt in (S0\{i} ,C). Thus,

m(S0,C)−m(S0\{i} ,C) = c(t)−c(t∗)

= ∑
l∈R

cil +ci0i − ∑
l∈R

cp∗l−1pl
.

We will prove that this expression coincides withm(S0,C′)−m(S0\{i} ,C′). Recall
cil = c′il for all l ∈ N0, i /∈ { j,k}. We see two cases:

1. There existsl ∈ {0,1, ..., r} such that{ j,k} ⊂ Rl . We consider three subcases:

(a) ( j,k) ∈ t. Sincec′jk < c jk, t is anmt in (N0,C′) , t∗ is anmt in (S0\{i} ,C′) ,

and( j,k) ∈ t∗. Hence,

m
(

S0,C
′
)

−m
(

S0\{i} ,C′
)

= ∑
l∈R

c′il +c′i0i − ∑
l∈R

c′p∗l−1pl
.

= ∑
l∈R

cil +ci0i − ∑
l∈R

cp∗l−1pl

= m(S0,C)−m(S0\{i} ,C) .

(b) ( j,k) /∈ t and{ j,k} ⊂ Rl with l 6= 0. We consider the grapht ∪{( j,k)}.
Sincet is a tree, there exists a cycleg in (S0,C) . Moreover,(i, l) /∈ g be-
cause{ j,k} ⊂ Rl , (i, l) is in the unique path connectingj with 0, and(i, l)
is also in the unique path connectingk with 0. Under Lemma 1, by delet-
ing the most expensive arc ing we get anmt t′ in (S0,C′). Notice that
{(i, l)}l∈R ∈ t ′,

(

i0, i
)

∈ t ′, and
{(

p∗l−1, pl
)}

l∈R ∈ t ′. Using arguments sim-
ilar to those used before witht andt∗ we obtain that

m
(

S0,C
′
)

−m
(

S0\{i} ,C′
)

= ∑
l∈R

c′il +c′i0i − ∑
l∈R

c′p∗l−1pl
,

which coincides withm(S0,C)−m(S0\{i} ,C) .

(c) ( j,k) /∈ t and{ j,k} ⊂ R0. We consider the grapht ∪{( j,k)}. Sincet is
a tree, there exists a cycleg in (S0,C). Using arguments similar to those
used in the previous case we can prove that

m
(

S0,C
′
)

−m
(

S0\{i} ,C′
)

= m(S0,C)−m(S0\{i} ,C) .

2. j ∈Rl ,k∈Rq with l 6= q. Thus,l 6= 0 orq 6= 0. Assume, without loss of generality,
that l 6= 0. Then,

t̂ = (t\{(i, l)})∪{( j,k)}
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is a tree in(S0,C) andc(S0,C, t̂) = c(S0,C, t)− cil + c jk. Sincet is anmt in
(S0,C) andc jk ≤ cmin

i , we conclude thatc jk = cil = cmin
i andt̂ is anmt in (S0,C) .

We can computêR and
{

R̂l
}

l∈R∪{0} for t̂ in the same way that we computedR

and
{

Rl
}

l∈R for t. Now, there existsl ∈ R∪{0} such that{ j,k} ⊂ R̂l and we
proceed as in Case 1.

K does not satisfyCS. See Dutta and Kar (2004).

K does not satisfyILC. In Example 1,
(

N0,C0
)

,
(

N0,C2
)

and 1 are as in the definition
of ILC. Nevertheless,K1

(

N0,C0
)

= 6 andK1
(

N0,C2
)

= 5.

K does not satisfyIIT. SinceK does not satisfyILC, under Proposition 1 (iii), the
result holds.

K does not satisfySCM. SinceK does not satisfyILC, under Proposition 1 (i) and
Proposition 1 (iii), the result holds.

K does not satisfyPM. SinceK does not satisfyCS, under Proposition 1 (ii), the result
holds.

K does not satisfyPOS. In Example 1,K1
(

N0,C20
)

= −4.

K does not satisfySEP.
Example 3. Let (N0,C) be such thatN = {1,2,3} and

C =









0 10 100 20
10 0 10 100
100 10 0 40
20 100 40 0









.

TakeS= {1,2} . Then,m(N0,C) = 40, m(S0,C) = 20, m({3}0 ,C) = 20, K1 (S0,C) =
−35, andK1 (N0,C) = −15.

(iii)

DK satisfiesCS and CM. See Dutta and Kar (2004).

DK satisfiesPOS. It is trivial.

DK satisfiesSYM. Using arguments similar to those used when we proved thatB
satisfiesSYM, we can prove thatDK also satisfiesSYM.

DK does not satisfyILC. In Example 1,
(

N0,C0
)

,
(

N0,C2
)

, and 1 are as in the defi-
nition of ILC. Nevertheless,DK1

(

N0,C0
)

= 6 andDK1
(

N0,C2
)

= 2.

DK does not satisfySCM. SinceDK does not satisfyILC, under Proposition 1 (i) and
Proposition 1 (iii), the result holds.

DK does not satisfyCON. In Example 1,DK (N0,Cx) = (2,10) when x > 0 and
DK
(

N0,C0
)

= (6,6) .

DK does not satisfySEP. In Example 2,DK (N0,C) = (2,2,1) andDK (S0,C) = (1,3).

DK does not satisfyPM. SinceDK does not satisfySEP, under Proposition 1 (ii), the
result holds.

DK does not satisfyESEC.
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Example 4. Let (N0,C) and(N0,C′) be such thatN = {1,2,3} ,

C =









0 10 10 10
10 0 10 10
10 10 0 6
10 10 6 0









andC′ =









0 16 16 16
16 0 10 10
16 10 0 6
16 10 6 0









.

We haveDK (N0,C) = (10,8,8) andDK (N0,C′) = (14,9,9).

DK does not satisfyIIT. SinceDK does not satisfyILC, under Proposition 1 (iii), the
result holds.

DK does not satisfyISC.
Example 5. Let (N0,C) and(N0,C′) be such thatN = {1,2,3},

C =









0 100 110 120
100 0 6 6
110 6 0 10
120 6 10 0









andC′ =









0 100 110 120
100 0 3 6
110 3 0 10
120 6 10 0









Then,DK3 (N0,C) = 53 andDK3 (N0,C′) = 100.

(iv)

FTM satisfiesCS, CM, SCM, PM, CON, POS, SEP, SYM, ESEC, and IIT. See
Bergantĩnos and Vidal-Puga (2007a).

FTM satisfiesISC. Before proving it we need some previous results, which can be
found at Bergantĩnos and Vidal-Puga (2007a).
Given anmcstp(N0,C) and anmt t, Bird (1976) defined theminimal network(N0,Ct).
In Bergantĩnos and Vidal-Puga (2007a), we defined theirreducible formof an mcstp
(N0,C) as the minimal network(N0,C∗) associated with anymt.
An mcstp(N0,C∗) is irreducible if and only if there exists a treet in (N0,C∗) that
satisfies the following two conditions:

(A1) t is lineal, i.e.t = {(πs−1,πs)}
n
s=1 whereπ0 = 0.

(A2) Givenπp,πq ∈ N0 with p < q, c∗πpπq
= max

s|p<s≤q

{

c∗πs−1πs

}

.

Moreover,t is anmt. Given anmcstp(N0,C), we say that the agentsconnect to the
source via t′ in the orderπ following Prim’s algorithmif t ′ is obtained through Prim’s
algorithm and in stagep, the arc selected is

(

π0
p,πp

)

, for eachp. We defineC∗∗ as
follows: for all πp,πq ∈ N0 with p < q,

c∗∗πpπq
= max

s|p<s≤q

{

cπ0
s πs

}

.

The mcstp(N0,C∗∗) is the irreducible form of(N0,C), i.e. C∗∗ = C∗. Moreover,t =
{(πs−1,πs)}

n
s=1 is anmt in (N0,C∗) that satisfies(A1) and(A2).

Let (N0,C), (N0,C′) and i ∈ N be as in the definition ofILC. We assume that there
exists a unique arc( j,k) such thatc jk 6= c′jk. The general case can be derived from this
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case using similar arguments to those used withB andK. We assume, without loss of
generality, thatc′jk < c jk. Sincec′jk < c jk ≤ cmin

i , we deduce thati 6= j andi 6= k.
We consider three cases:

1. There exists anmt, t =
{(

l0, l
)}

l∈N in (N0,C) such that( j,k) ∈ t.

Assume, without loss of generality, thatj < k, k0 = j, and that the agents connect
to the source (inC) via t in the orderπ = (1, ...,n) following Prim’s algorithm.

Sincet is anmt in (N0,C) and( j,k) ∈ t, we have thatt is anmt in (N0,C′). Let
π ′ = (π ′

1, ...,π ′
n) such that the agents connect to the source (inC′) via t in the

orderπ ′ following Prim’s algorithm.

We can findπ ′ such that for eachl = 1, ..., j, we havel = π ′
l and c∗(l−1)l =

c′∗(l−1)l = cl0l .

Let p be such thatk = π ′
p. Thus, j < p≤ k. Moreover, we can chooseπ ′ such

that l = π ′
l for all l = j + 1, ..., p− 1 andc∗(l−1)l = c′∗(l−1)l = cl0l < cmin

i for all
l = p, ...,k.

Assume that we can findm∈ N such thatm > k, c∗(m−1)m = cm0m ≥ cmin
i , and

c∗(l−1)l = c′∗(l−1)l = cl0l < cmin
i for all l = k+1, ...,m−1. Then, for alll = m, ...,n,

l = π ′
l andc∗(l−1)l = c′∗(l−1)l = cl0l . Sincecl0l < cmin

i for all l = p, ...,m−1 we

deduce thatπ ′
i = i. Moreover,i < j or i ≥ m.

If we can not findm as above, thenπ ′
i = i < j. In this case we takem= n+1.

We now prove thatc∗il = c′∗il for all l ∈ N0 \ {i} . We assume thati < j (the case
i ≥m is similar and we omit it). By(A2), it is trivial to see thatc∗il = c′∗il whenl ≤

j. If j < l ≤ m−1, thenc∗il = c∗i j = c′∗i j = c′∗il . If l ≥ m, c∗il = max
{

c∗i j ,c
∗
(m−1)l

}

=

max
{

c′∗i j ,c
′∗
(m−1)l

}

= c′∗il .

In Bergantĩnos and Vidal-Puga (2007a, Lemma 4.1(b)), we proved thatFTM
satisfiesIOC in the class of irreducible matrices. Thus,FTMi (N0,C∗) = FTMi

(N0,C′∗). From Bergantĩnos and Vidal-Puga (2007a, Definition 3.1), it is straight-
forward to check that for allmcstp(N0,C), FTM(N0,C)= FTM(N0,C∗). Hence,
FTMi (N0,C) = FTMi (N0,C′) .

2. For allmt t in (N0,C) , ( j,k) /∈ t. Moreover, for allmt t′ in (N0,C′), ( j,k) /∈ t ′.

Let t be anmt in (N0,C). Thus,t is also anmt in (N0,C′). SinceFTM satisfies
IIT , FTMi (N0,C) = FTMi (N0,C′) .

3. For allmt t in (N0,C), ( j,k) /∈ t. Moreover, there exists anmt t′ in (N0,C′) such
that( j,k) ∈ t ′.

Clearly,m(N0,C) > m(N0,C′) . We define themcstp(N0,C′′) wherec′′jk = c′jk +

m(N0,C)−m(N0,C′) andc′′lm = clm otherwise. Notice thatC≥C′′ ≥C′.

It is trivial to see that ift is anmt in (N0,C), thent is anmt in (N0,C′′). Since
FTM satisfiesIIT , FTMi (N0,C) = FTMi (N0,C′′) .
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By Case 1,FTMi (N0,C′′) = FTMi (N0,C′) .

FTM satisfiesILC. SinceFTM satisfiesIIT , under Proposition 1 (iii), it holds.�

In the Table 1 we summarize the results obtained in Theorem 1.

Table 1. Rules and its properties as stated in Theorem 1

B K DK FTM

CS X – X X

CM – X X X

SCM – – – X

PM – – – X

CON – X – X

POS X – X X

SEP – – – X

SYM X X X X

ESEC X X – X

IIT – – – X

ISC X X – X

ILC – – – X

4. Concluding remarks

We have studied different properties that are defined in the literature of cost allocation
in minimum cost spanning tree problems (mcstp). Most of these properties have been
previously studied in the literature and applied to some rules. However, not all the
properties had been checked for all the rules. In this paper we fill this gap. There are
other properties that have been studied in the literature. We briefly comment three of
them: consistency, additivity, and strategic merging.

The idea ofconsistencyis the following: Some agents pay the allocation that some
rule assigns to them, and connect to the source. The rest of the agents face the resulting
mcstpand pay the allocation that the same rule assigns to them. Consistency states that
the final allocation is the same as before. Two different properties of consistency are
used to characterizeDK defined (Dutta and Kar, 2004, Theorem 2) andB (Dutta and
Kar, 2004, Theorem 3), respectively.

Additivity implies that the solution for the sum of two problems should be the sum
of their respective solutions. This property is too strong and no rule satisfies it. A
restricted version of additivity is used to characterizeFTM in Brânzei, Moretti, Norde
and Tijs (2004) and Bergantiños and Vidal-Puga (2005).

Strategic mergingarises when a group of agents manipulates the allocation by
merging and acting as a single node. It is of interest that no improvement be possi-
ble via strategic merging. Among the above rules, onlyB satisfies this property in an
wide class of problems. Non-strategic merging is used to characterizeB in Gómez-Ŕua
and Vidal-Puga (2005) and̈Ozsoy (2006).
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Bergantĩnos, G. and Lorenzo, L. (2005). Optimal Equilibria in the Non-cooperative
Game Associated with Cost Spanning Tree Problems.Annals of Operations Research,
137, 101–115.
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Bergantĩnos, G. and Vidal-Puga, J. (2007b). The Optimistic TU Game inMini-
mum Cost Spanning Tree Problems.International Journal of Game Theory, 36(2),
223–239.

Bird, C. G. (1976). On Cost Allocation for a Spanning Tree: A Game Theoretic App-
roach.Networks, 6, 335–350.

Branzei, R., Moretti, S., Norde H. and Tijs S. (2004). The P-value for Cost Sharing in
Minimum Cost Spanning Tree Situations.Theory and Decision, 56, 47–61.

Dutta, B. and Kar, A. (2004). Cost Monotonicity, Consistency and Minimum Cost
Spanning Tree Games.Games and Economic Behavior, 48(2), 223–248.

Feltkamp, V., Tijs, S. and Muto, S. (1994). On the Irreducible Core and the Equal
Remaining Obligation Rule of Minimum Cost Extension Problems. Mimeo, Tilburg
University.
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