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Abstract We consider four cost allocation rules in minimum cost spanning tredgamasb These
rules were introduced by Bird (1976), Dutta and Kar (2004), Kar 2208nd Feltkamp, Tijs and
Muto (1994), respectively. We give a list of desirable properties amdtwdy which properties
are satisfied by these rules.
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1. Introduction

In this paper we study minimum cost spanning tree problgntst p. Consider that a
group of agents, located at different geographical plagest some particular service
which can only be provided by a common supplier, called theca Agents will be
served through connections which entail some cost. Howthey do not care whether
they are connected directly or indirectly to the source.

There are many economic situations that can be modeledsimvty. For instance,
several towns may draw power from a common power plant, andehkave to share
cost of the distribution network. This example appears ittand Kar (2004).

Bergantiios and Lorenzo (2004, 2005) studied a real situation whilegers
should pay the cost of constructing pipes from their respettouses to a water sup-
plier. Some houses in a valley sited in Galicia (Spain), ireguaccess to a water dam
built by the local authority. The cost of the pipes connedtethe houses water sup-
ply required villagers to pay for it. Some villagers paid fbe pipes which would
connect them to the dam. After the commencement of the systerst of the other
villagers decided to connect to the network. This becomesiecs of dispute as the
latter villagers want usage of the existing network, paidhi®/former villagers creat-
ing a discompensation to former villagers. This situationld have been avoided by
using a prior sharing cost rule.
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The literature omrmcstpstarts by defining algorithms for constructing minimum
cost spanning treesnf). Other important issue is how to allocate the cost assetiat
with themtamong the agents.

Bird (1976) proposed a cost allocation rule (we caBjt B has been axiomati-
cally characterized in Dutta and Kar (2004)018ez-Ria and Vidal-Puga (2005) and
Ozsoy (2006). Bird (1976) associated a coalitional gamb wmitymcstp Kar (2002)
characterized the Shapley value of this coalitional gamanaallocation rule fomc-
stp. We denote this rule a. Dutta and Kar (2004) proposed and characterized a
new rule, which we denote &K. Finally, Feltkamp, Tijs and Muto (1994) introduced
a rule formcstp we call it FTM. This rule has been axiomatically characterized in
Branzei, Moretti, Norde and Tijs (2004), and in Bergénos and Vidal-Puga (2005,
2007a, 2007b).

In Bergantfios and Vidal-Puga (2007a), we gave a list of desirable ptiegehat
a fair rule should satisfy. Most of these properties areaalyeknown in the literature
of mcstp others are defined applying well-known principlesriostp We proved that
FT M satisfies most of these properties. In this paper we studghwdfithese properties
are satisfied by the above rules.

In Bergantfios and Vidal-Puga (2007a), we defined the propertydépendence
of Other CostglOC). This property says that the amount paid by ageiepends only
on the cost of the arcs to which he belongs. However, no ruisfiss I0C. In this
paper we introduce two weaker versiond ©fC. Independence of Small CogtSC)
says that the amount paid by each ageaties not depend on the cost of the arcs that
are cheaper than agerg cheapest arcilndependence of Large Cogi&C) says that
the amount paid by each agemoes not depend on the cost of the arcs that are more
expensive than agems most expensive arc. We prove thasatisfies|SC but fails
ILC. K satisfied SCbut failsILC. DK fails both. Nevertheles§, T M satisfies both.

The paper is organized as follows. In Section 2 we introducstp along with the
rules and properties considered in the paper. In Section Bregent the results. In
Section 4 we provide some concluding remarks.

2. The minimum cost spanning tree problem

This section is divided in three subsections. In the firsssgbon, we introduce the
problem. In the second subsection, we introduce the thies of the literature. Fi-
nally, in the third subsection, we present the properties.

2.1 The problem

Let.# ={1,2,...} be the set of all possible agents. [[&§ be the set of all permuta-
tions over the finite sétl C .#". Givenm e Iy, letPre(i, m) denote the set of elements
of N which come beforéein the order given byr, i.e.Pre(i,m) ={j e N | rt(j) < (i) }.
GivenSC N, let s denote the order induced lyamong the agents i@

We are interested in networks whose nodes are elements ofNg seN U {0},
whereN C ./ is finite and O is a special node called theurce Usually we take
N={1,..,n}.
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A cost matrix C= (gjj )i’jeNo on N represents the cost of direct link between any
pair of nodes. We assume thaf = cji > 0 for eachi, j € Ng andc;j = 0 for each
i € No. Sinceci; = cji we work with undirected arcs, i.€i, j) = (j,i). We denote the
set of all cost matrices ové as%™. GivenC, C' € 6™ we sayC < C'if ¢;j < c; for
all'i, j € No.

A minimum cost spanning tree problebriefly anmcstp is a pair(Ny,C) where
N C .4 is the finite set of agents, 0 is the source, B %N is the cost matrix. Given
anmcstp(No,C), we define thencstpinduced byC in SC N as(%,C).

A network goverNp is a subset of (i, j)|i, j € No}. The elements of are called
arcs Given a networlg and a pair of nodeisand j, apathfromi to j in gis a sequence
of different arcs{(in_1,in) }_, satisfying(in_1,in) € g for all he {1,2,...,1}, i = o,
andj =i.

A treeis a network satisfying that for eac¢ke N there exits a unique path fronto
the source. If is a tree we usually write= {(i°i) }. ., wherei® represents the first
node in the unique path infromi to 0.

Let N denote the set of all networks ovidp. Let %ON denote the set of all net-
works, where each agent N is connected to the source, i.e. there exists a path ifrom
to 0 in the network. Given amcstp(Np,C) andg € ¢N, we define theostassociated
with g as

ieN’

c(No,C.9)= 3 cj.
(i,)eg
When there are no ambiguities, we writég) or c(C,g) instead ofc(Ny,C,g). A
minimum cost spanning trder (No,C), briefly anmt, is a treet € ¢! such that(t) =
minge%u c(g). Itis well-known that armt exists, even though it does not necessarily
have to be unique. Given ancstp(No,C), we denote the cost associated with amy
tin (No,C) asm(No,C).

Given anmcstp Prim (1957) provided an algorithm for building amt. The idea
of this algorithm is simple: starting from the source we ¢ong a network by se-
quentially adding arcs with the lowest cost and withoutddtrcing cycles. Formally,
Prim’s algorithm is defined as follows. We start wih= {0} andg® = 0.

Stagel : Take an arq0,i) such thatcy = minjen {coj}. If there are several arcs
satisfying this condition, select one of them. N&= {0,i} andg' = {(0,i)}.

Stage pr 1: Assume that we have define&® c Ny andgP € ¥N. We now define
S+t andgPtl. Take an arqj,i) with j € S° andi € No\SP such thatcji =
Minesp e\ {Cki }- I there are several arcs satisfying this condition, gelec
one of them. NowsP*! = P U {i} andgP™t = gP U {(j,i)}.

This process is completed imstages. We say thaf' is a tree obtained following
Prim’s algorithm. Notice that this algorithm leads to a treet that this is not always
unique. We use Prim’s algorithm to prove the following résul

Lemma 1. A tree t is an mt if and only if for all & Ny, S# 0, there existgi, j) €t
withi€ S, je No\S such thatig = minecsjeny\s{Ck }-
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Proof. (=) Let SC Ny such thatS# 0. Let(i, j) be an arc with € S, j € Np\Sand
Cij = MiNkegieny\siCi}- Suppose, j) ¢ t. We consider the grapg =t U {(i, ])}.
Sincet is a tree, there exists a pathtifromi to j. In this path, there exists an arc
(i",)") etwith (i,j) # (",}), 1" € Sand ] € No\S. Thus,t’ =g\ {(’,j’)} is atreein
(NO,C). Sincet is anmt, Cirjr < GCij. Hence,ci/j/ = minkes|eNo\S{ck|}.

(<) We prove that is anmt proving that it can be obtained through Prim’s algorithm.
There existg0,i1) € t with i1 € N such thatcg, = minjen {Coj }. Thus, (0,i1) is an
eligible arc in the first step of Prim’s algorithm asti= {0,i1}. There existgiJ,i,) €t
with i3 € S* andiz € N\ {ir} such thattg,, = minesjeng\ s {Ca}- Thus, (i3.i2) is
again eligible following Prim’s algorithm. Following thigasoning, we deduce that
can be computed following Prim’s algorithm. Hentés anmt. [J

A game with transferable utilityTU game is a pair(N,v) wherev: 2N — R
satisfiess (&) = 0. Sh(N, v) denotes the Shapley value (Shapley, 1953\o¥). Bird
(1976) associated AU game(N,vc) with eachmcstp(Np,C). For each coalition
SCN,

Ve (S) =m(S,C).
This is a “pessimistic” approach, because the playeSassume that the rest of the
players are not present. An alternative approach is to asshemthe rest of the players
are already connected and thus connection is possibleghriniem. In Berganfios
and Vidal-Puga (2007b), we associated an “optimistitf game(N,v}) with each
mcstp(No,C). For each coalitiols C N,

Vi () = m(&cﬂN\ >) 7

wherec;jL(N\S) —gj foralli,j e Sandcﬂ

NS minjeng\s{cij } foralli e S

2.2 Rules

One of the most important issues addressed in the literatooeitmcstpis how to
divide the cost of connecting agents to the sourceost allocation rulds a function
@ such thaty (No,C) € RN for eachmestp(No,C) andy ;< &i (No,C) = m(No,C). As
usual,ys (No,C) represents the cost allocated to agent

We will now introduce four rules. ThBird rule (Bird 1976) and Dutta-Kar’s rule
(Dutta and Kar 2004) are defined through Prim’s algorithm.figé assume that there
is a uniquant t.

Giveni € N, leti® be the first node in the unique pathtifromi to the source. The
Bird rule (B) is defined for eache N as

Bi (No,C) = CiOi.

The idea of this rule is simple. Agents connect sequenttallthe source following
Prim’s algorithm and each agent pays the correspondingemiom cost.

Dutta-Kar’s rule DK) is defined in a more elaborate way. Assume that the agents,
according with Prim’s algorithm, connect in the orde2]1..,n. First agent 1 con-
nects to the source. We defimd = cp1. Now agent 2 connects toOZZ/vhereczo2 =
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min{Coz,C12} . We takex; = min{p',cy,} and p? = max{pt,c,}. Now agent 3
connects to 3wherecy; = min{cog, C13,Cz3} . We takex, = min{ p?, cyp5} andp® =
max{ p2,c303}. This process continue until we reach agentin this case we take
Xn = max{ p"~1,c 0, }. Then, the final allocation is given byi.e., for alli € N

DK; (No,C) = X.

Assume now there exists more than ane In this case, the Bird rule and Dutta-
Kar’s rule can be defined as an average of the trees assouwidkeBrim’s algorithm.
Dutta and Kar (2004) proceeded as follows. Givea My they defined™ (Np,C) as
the allocation obtained when they applied the previousogaitto (Np,C) and solved
the indifferences by selecting the first agent giverrbyrhen they defined

1
B(No,C) =~ 5 B"(No,C).
nl 4,
They definedK (Np,C) in a similar way.
The game theory approach can also be used for defining ruteXar rule (K) is
defined as

K (No,C) = Sh(N, vc).

In Bergantiios and Vidal-Puga (2007b), we proved tlr@ltkamp-Tijs-Muto’s rule
(FTM) can be defined as

FTM(No,C) = Sh(N, V).

2.3 Properties

We now introduce several properties of rules. For a detdilgclission of these proper-
ties see, for instance, Bergdints and Vidal-Puga (2007a). Given a rylewe consider
the following properties:

Core Selection CS For allmestp(Np,C) and allSC N, we have

_Z;/-’i (No,C) < M(S,C).

CSsays that no group of agents can be better off by building thenh network. In
particular, this property prevents some agents to subglusre.

Cost Monotonicity (CM) For allmestp(No, C) and(No,C’) such thatij < ¢j; for some
i €N, j € Ng and otherwisey = ¢;, we have

@ (No,C) < i (No,C) .

CM says that a decrease in the cost of a link cannot harm theicewlj agents. In
particular, this property prevents the agents to take adgenby reporting false con-
nection costs.
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Strong Cost Monotonicity (SCM)] For allmcstp(No,C) and(No,C’) such thaC < C/,
we have

W (No,C) < @ (No,C').
SCMsays that a decrease in the cost of a link cannot harm any.a8€M is called
solidarity in Berganfios and Vidal-Puga (2007a).
Population Monotonicity (PM) For allmcstp(No,C), SC N, andi € S, we have

Ui (No,C) < ¢ (%,C).
PM says that no agent is worse off with the entrance of new agéntsrticular, this

property prevents incentives to veto the entrance of newtage

Continuity (CON) For allN c .4, ¢/ (No,-) is a continuous function g&N. CON
says that small changes in the costs do not mean a big chattgeatiocation.

Positivity (POS For allmcstp(Np,C) and alli € N, we have
Wi (No,C) > 0.

POSsays that no agent can make a profit.

Separability (SEB For allmcstp(Np,C) andSC N satisfyingm(Np,C) = m(S,C) +
m((N\S),,C), we have

_ | 4 (S,C) ifieS
41 (No,C) = { W ((N\S)y,C) ificN\S
SEPsays that if two groups of agents can connect to the sourapéerdiently, then
their respective allocations should also be independent.
Symmetry (SY M For allmcstp(Np,C) and all pair of symmetric agentsj € N,

Ui (No,C) = ¢j (No,C) .

We say that, j € N aresymmetridf for all k€ No\ {i, j}, Cik = Cjk.

Independence of Other CostslOC) For all mcstp(Np,C) and(Ny,C’), and alli € N
such thatij = ¢jj for all j € No \ {i}, we have

Wi (No,C) = ¢ (No,C').

IOC says that an agent’s allocation should only depend on thieofdkeir adjacent
links.

Equal Share of Extra Costs ESEQ Let (Np,C) and (Np,C’) be twomcstp Let
Co,Cp > 0. Assumingcoi = Co andcg = ¢, for alli € N, ¢p < ¢, andcij = ¢jj < ¢o for
alli,j € N, we have

d _
01 (No,C) = i (No,C) + 2 Co.

ESECsays that the agents should share equally any extra costeat donnection to
the source, when it is the more expensive one and it is equallfthe agents. We say
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that twomcestp(Np,C) and(No,C’) aretree-equivalenif there exists a treesuch that,
firstly, t is anmtfor both (No,C) and(No,C’), and secondly;ij = ¢ for all (i, j) €'t.

Independence of Irrelevant Trees (IT) If two mestp(No,C) and (Np,C') are tree-
equivalent,

Y (No,C) =0 (N()»C/) :
[IT says that anynt provides all the relevant information.

In Bergantfios and Vidal-Puga (2007a), we proved that there is no riishgag
IOC. We now introduce two properties weaker tHa&c.

Independence of Small Cost$ISC) Let (No,C) and(No,C’) be twomcstpandi € N
satisfying three conditions: Firsty = cj, for all k € No. Second, givenj,k € No,
thencjx < ¢ if and only if ¢}, < ™" wherec™" = mincny iy {cik} - Third, given
j,k € No such that" < ¢y then,c, = cjk. Then,

¢ (No,C) = i (No,C') .
ISCsays that the amount paid by agedbes not depend on the cost of the arcs cheaper
than his cheapest arc.

Independence of Large CostgILC) Let (N, C) and(Np,C’) be twomcstpandi € N
satisfying three conditions: Firsty = cj, for all k € No. Second, giverj,k € No,
thenc™ < cj if and only if "™ < ¢ wherec"™® = maxcng\ (i} {Ci}. Third, given
j,k € No such thatj < cimaxthen,c’jk =Cjk. Then,

Wi (No,C) = i (No,C') .
ILC says that the amount paid by agedbes not depend on the cost of the arcs larger
than his most expensive arc.

In the next proposition we summarize the relations amongetipeoperties. Parts
(i) and (ii) appear in Bergaritbs and Vidal-Puga (2007a). Part (iii) is proved in this
paper.

Proposition 1.

(i) SCM impliesCM and IIT.
(i) PM implies CS and SEP.
(i) 1T implies ILC.

Proof. (iii) Assume thaty is a rule satisfyindIT and let(Np,C), (Np,C') andi € N
be as in the definition diLC. We first prove the following claim:
Claim. If there existj,k € Np anda > 0 such that, for all, m € No,

om={ G LM =14

Cim otherwise

andc"™ < cjk, theny; (No,C) = ¢ (No,C').
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Sincec"™ < cjx < Cj, we deduce that# j andi # k. Lett = {(1°1)},_y be
anmtin (No,C). If (j,k) ¢ t, thent is also anmtin (Np,C’). Sincey satisfieslIT,
Wi (No,C) = i (No,C'). If (j,k) €t, we can assume, without loss of generality, that
j = K°. Two cases are possible:

1. Link (j,k) is notin the unique path infromi to 0. We defineg* = (t\ {(j,k)})U
{(i,k)}. Itis trivial to see that* is a tree satisfying that

C(N07C7t*) - C(N07C7t) = Cik — Cjk-

Sincec"™ < cjk we deduce that(No,C,t*) < ¢(No,C,t). Thus,t* is anmtin
both (Np,C) and(Np,C'). Sincey satisfiedIT, y; (No,C) = ¢ (Np,C').

2. Link (j,k) is in the unique path ib fromi to 0. We definet* = (t\ {(j,k)}) U
{(0,i)}. Using similar arguments to those used in the first case weaarlude
thatys (No,C) = ¢ (No,C').

This concludes the proof of the claim.
Let A = {(i%,i?) }|_, be the set of arcs satisfying that;z # Clo. We takeC® =C.
- 1
Foralll = 1,..., p we define thencstp(No,C') wherec), , = ¢/,., andcj, = L oth-
1 1

erwise. For each= 1,..., pwe take(j,k) = (i{,i?). Under the claimy; (No,C' 1) =
@i (No,C') forall | =1,.., p. SinceC® = C andCP = C', y satisfiedLC. O

3. Properties of the rules

In this section we study which properties the rules satiSgme of the results are
already known in the literature. In this case we only refethi paper in which it is
proved.

Theorem 1.

(i) B satisfies CS, POS, SYM, ESEC, and ISC. B does not satisfy@N¥,F3v,
CON, SEP, IIT, and ILC.

(i) K satisfies CM, CON, SYM, ESEC, and ISC. K does not satisfy@\s, BM,
POS, SEP, IIT, and ILC.

(i) DK satisfies CS, CM, POS, and SYM. DK does not satisfy SCM, N, C
SEP, ESEC, IIT, ISC, and ILC.

(iv) FTM satisfiesCS, CM, SCM, PM, CON, POS, SEP, SYM, ESEC, ICT attdl
ILC.

Proof. (i)
B satisfiesCS. See Bird (1976).

B satisfiesPOS. It is trivial.
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B satisfiesSYM. Leti, j be two symmetric agents {iNo,C) . Givenrt € Ny we define
) € My such thatt! (i) = (), m (j) = m(i), and 1! (k) = (k) for all k € N\
{i,j}. Itis trivial to see thaB"(No,C) = BI"' (No,C). Thus,

1 1 i
B(No.C) = = 5 BINoC)=7 5 B (No,C)
s nelly s nelly
1
= = BT (No,C) = B (No,C).
n! H;N :

B satisfiesESEC. Let (Np,C) and(No,C’) be as in the definition & SEC It is straight-
forward to see that for afir € My,

T A B (No,C) 06 co) ifm(i)=1
B (No.C') _{ B"(NO7C) otherwise.
Now it is not difficult to check thaB satisfiedE SEC

B satisfiesISC. Let (No,C), (No,C’), andi € N be as in the definition ofSC. It is
enough to prove thd@” (Np,C) = B/'(No,C’) for eachrr € My.

We first assume that there exits a unique(gr&) such that:’jk # Cjk. This means # |
andi # k. We can assume without loss of generality tdth< Cik < ¢ When we
computeB™ (Np,C) (resp.B™(Np,C")) following Prim’s algorithm, the agents connect
sequentially to the source in a specific order. We denoteotitier asrt* (resp. /).
We consider three cases:

1. (i) <min{m*(j), " (k)}. Thus,Pre(i, ) = Pre(i, 7). Hence,

B (No,C) = B[" (No,C') = Iepr;r;bnm {ci}.

2. min{r" (j),m (K)} < r* (i) < max{mr* (j), 7" (k) }. We assume without loss of
generality thatr* (j) < " (i) < 1 (k). We know thatB[" (No,C) = Cjo;. Thus,
¢"" < Gioj < Cjk. Sincecjx < ¢™" we have thatjk = Cio; andB]*(No,C) = ¢™".

Sincec)y, < cjk, Pre(i, ")  Pre(i, ). Thus,B["(No,C’) < B["(No,C) = ¢™".
Moreover'Bin(NOvC/) = minIePre(i.rr*’) fai} < Cimin- ThUS,B-”(NO,C') = Cimin-

3. max{m* (j),m* (k)} < rr* (i). Thus,Pre(i, ™) = Pre(i, 7). Hence,

B"(No,C) =B["(No,C') = IePrrr;Ilnn* {ci}.

Assume now that there are several dic&) such that), # cjx. LetA= {30, 15) }h N
be the set of those arcs. We consider the farfi{lito, C") }E:o such thatC® = C and

h { C/thg if (kvl) = (Jrl]ﬂlg)

G = .
o} otherwise
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for all h=1,....p. Notice that for allh=1,...,p, (No,C""1), (No,C"), andi € N
are as in the definition diSC. Moreover, (jf, j5) is the unique arc with different cost
in bothmestp Thus, B (No,C"1) = B (No,C") for all h=1,..., p. SinceCP = C/,
B"(No,C) = Bi’T(No7C/).

B does not satisfyCM. See Dutta and Kar (2004).

B does not satisfySCM. SinceB does not satisifCM, under Proposition 1 (i), the
result holds.

B does not satisfyCON.
Example 1 Let (Np,C*) be such thaN = {1,2}, x > 0, and

0 10 10+x
Cc= 10 0 2 .
10+x 2 0

B(No,C*) = (10,2) whenx > 0 butB (No,C°) = (6,6).
B does not satisfySEP.
Example 2 Let (Np,C) be such thaN = {1,2,3}, S= {1,2}, and

0 3 10 1
3 0 1 10
C=1 10 1 o 3
1 10 3 0

It is clear thatm(&,C) + m((N\9),,C) = m(No,C). However,B(Nog,C) = (2,2,1)
andB(S,C) = (3,1).

B does not satisfyPM. SinceB does not satishGER under Proposition 1 (ii), the
result holds.

B does not satisfyl LC. In Example 1,(No,CP), (No,C?) and 1 are as in the definition
of ILC. NeverthelessB; (No,C°) = 6 andB; (No,C?) = 10.

B does not satisfylI T. SinceB does not satisfyLC, under Proposition 1 (iii), the
result holds.

(ii)

K satisfiesCM. See Dutta and Kar (2004).

K satisfiesCON. SinceK (No,C) = Sh(N,vc) andvc is a continuous function o@,
the result holds.

K satisfiesSYM. It is trivial to see that if agentsand j are symmetric in(Np,C),
they are symmetric iiN,vc) . SinceK (Np,C) = Sh(N,vc) and the Shapley value is
symmetric, the result holds.

K satisfiesESEC. Let (Np,C) and(Np,C’) be as in the definition dESEC It is easy
to see thatc (S) = vc (S) + (¢ — o) for all SC N. Thus,

Ki (NO;C/) = Sh (N,VC/) :Sh (N7VC)_A'_C/O;nCO

ch—
— K (No,C) + D=
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K satisfiesISC. Let (No,C),(No,C') andi € N be as in the definition ofSC. We
assume that there exists a unique @r&) such thatcj, # c’jk. The general case can
be derived from this case using similar arguments to thosd usth B. We assume,
without loss of generality, thagk < Cjk-
SinceK (Np,C) = Sh(N,vc) andvc (S) = m(S,C) for all SC N, it is enough to prove
that

m(S,C) —m(S\ {i},C) = m(%,C") —m(S\ {i}.C)),
wheni € S. We prove it only wher{ j,k} C S The other cases are trivial.
Lett = {(191)},_s be anmtin ($,C). We defineR as the set of agents who are
adjacent to agerntand connect to the source {inthrough agenit. Namely,

R={lesI’=i}.

We assume, without loss of generality, that {1,2,...,r} (R= 0 is possible).
Givenl € R, we defineR as the set of agents i who connect to the source in
through agenk. Namely,R' is the set of agentp € Ssuch that agenitis in the unique
path int from p to 0. We considet € R. Moreover, we define

R =(\{iH\UR-

leR

For eachl € R, we define themcstp((R'\ {1}),,C™") as themcstpthat results form
(R',C) when agent connects to the source and the rest of the agents can connect
through him. Formally, for alp € R\ {I}, Cg;'; = min{cip,Cop} andcy) = cqp When

q#0.
It is not difficult to check that

m(S,C) =m(R°,C) +|§Rm((R' \{I})O,C“) +I;c“ +Coj.-

Let pj € R%andp; € U R be such that their connection cost is minimal. Namely,
leR

Cpspr = min{cqsq e R andse | JR } ,
leR
We can assume, without loss of generality, that RL. Let p; € ROUR andp; €

U R be such that their connection cost is minimal, hence
leR\{1}

cp»ipzmin{cqs:qeRouRlandse U Fé}.

leR\{1}

Again, we can assume, without loss of generality, fhat R2.
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Following this procedure, we obta{r(p{"_;, pi)
Under Lemma 1,

¢ — <t\ ({(io,i)}UU{(i,l)}>> (P2 ) }ier

}iersuchthapy e R foralll =1,..,r.

leR

is anmtin (S\{i},C). Thus,

m($,C) —m(S\ {i},C)

c(t)—c(t")
I;C“ + Cjo; — |€Z;Cp'**lpl .

We will prove that this expression coincides witl(S,C’) — m(S\{i},C’). Recall
ci =c¢ foralll € No,i ¢ {j,k}. We see two cases:

1. There exist$ € {0,1,...,r} such tha j,k} C R'. We consider three subcases:

(@) (j,k) €t. Sincecj, < cjk, tis anmtin (No,C’), t* is anmtin (S\ {i},C’),
and(j,k) e t*. Hence,

m(%,C) —m(S\{i},C) = I}pcﬁ +Clo; — IZf’p.alpl-

= z Cit + Cjoj — z Cp; ,p
leR leR

= mM($,C)-m(S\{i},C).

(b) (j,k) ¢t and{j,k} c R with | # 0. We consider the graphU {(j,k)}.
Sincet is a tree, there exists a cydgin (S,C). Moreover,(i,l) ¢ g be-
cause{j,k} c R, (i,l) is in the unique path connectirjgwith 0, and(i,|)
is also in the unique path connectikgvith 0. Under Lemma 1, by delet-
ing the most expensive arc mwe get anmt t in ($,C’). Notice that
{(i,0}eret’, (%) et’,and{(pf_1, p) }, 5 €t Using arguments sim-
ilar to those used before withandt* we obtain that

m(SOaC/) - m(S)\{|},C/) = z Ci/| +Ci/0i B z C/Df‘,lpl’
leR leR

which coincides witthm(&,C) — m(S\ {i},C).

(©) (j,k) ¢t and{j,k} c R°. We consider the graphu {(j,k)}. Sincet is
a tree, there exists a cyofgin ($,C). Using arguments similar to those
used in the previous case we can prove that

m(%,C") —m(S\{i},C') =m(%,C) - m(S\{i},C).
2. jeR keRIwithl #q. Thus,| # 0 org+ 0. Assume, without loss of generality,

thatl # 0. Then,
f= O\ {0,HHu{(.K}
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is a tree in($,C) andc($,C,f) = ¢(%,C,t) —cj +cjk. Sincet is anmtin
(S,C) andcj < cm'n we conclude that,k =¢j ="M andf is anmtin (S,C).
We can comput:R and {R }IERU{O} for t in the same way that we computed

and{R'},  for t. Now, there exist$ € RU{0} such that{j,k} ¢ R and we
proceed as in Case 1.

K does not satisfyCS. See Dutta and Kar (2004).

K does not satisfyl LC. In Example 1,No,C°), (No,C?) and 1 are as in the definition
of ILC. NeverthelessK; (No,C%) = 6 andKz (No,C?) =

K does not satisfylI T. SinceK does not satisfyLC, under Proposition 1 (iii), the
result holds.

K does not satisfySCM. SinceK does not satisfyLC, under Proposition 1 (i) and
Proposition 1 (iii), the result holds.

K does not satisfyPM. SinceK does not satisf€S under Proposition 1 (i), the result
holds.

K does not satisfyPOS. In Example 1K; (No,C%) = —4.

K does not satisfySEP.
Example 3 Let (No,C) be such thaN = {1,2,3} and

0 10 100 20

10 0 10 100
100 10 O 40

20 100 40 O

C:

TakeS= {1,2}. Then,m(Np,C) = 40, m(S,C) =20, m({3},,C) =20, K1 ($,C) =
—35, andKj (Np,C) = —15.

(iii)

DK satisfiesCS and CM. See Dutta and Kar (2004).

DK satisfiesPOS. It is trivial.

DK satisfiesSYM. Using arguments similar to those used when we provedBhat
satisfiesSY M we can prove thaDK also satisfieSY M

DK does not satisfyl LC. In Example 1,(No,C°), (No,C?), and 1 are as in the defi-
nition of ILC. NeverthelessDK; (No,C?) = 6 andDK; (No,C?) = 2.

DK does not satisfySCM. SinceDK does not satisfyLC, under Proposition 1 (i) and
Proposition 1 (iii), the result holds.

DK does not satisfyCON. In Example 1,DK (Np,C*) = (2,10) whenx > 0 and
DK (No,C) = (6,6).
DK does not satisfySEP. In Example 2DK (Np,C) = (2,2,1) andDK (%,C) = (1,3).

DK does not satisfyPM. SinceDK does not satisf6E P, under Proposition 1 (ii), the
result holds.

DK does not satisfyESEC.
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Example 4 Let (Np,C) and(Np,C’) be such thaN = {1,2, 3},

0 10 10 10 0 16 16 16
[ 10 o 10 10 , |16 0 10 10
C=1170 10 0 6 [2C=| 16 10 0 6
10 10 6 0 16 10 6 0

We haveDK (Np,C) = (10,8,8) andDK (Np,C') = (14,9,9).
DK does not satisfyl T. SinceDK does not satisfyLC, under Proposition 1 (iii), the
result holds.

DK does not satisfyl SC.
Example 5 Let (Np,C) and(Np,C’) be such thaN = {1, 2, 3},

0 100 110 120 0 100 110 120
(100 0o 6 6 , [ 100 o 3 6
C=| 110 6 o0 10 |2C=1| 1310 3 0o 10
120 6 10 O 120 6 10 0O

Then,DK3z (No,C) = 53 andDK3 (Np,C’) = 100

(iv)
FTM satisfiesCS, CM, SCM, PM, CON, POS, SEP, SYM, ESEC, and |IT. See
Bergantiios and Vidal-Puga (2007a).

FTM satisfies| SC. Before proving it we need some previous results, which @n b
found at Berganiios and Vidal-Puga (2007a).

Given anmcstp(Np,C) and armt t, Bird (1976) defined theninimal networkNo, C).
In Bergantiios and Vidal-Puga (2007a), we defined ttreducible formof an mcstp
(No,C) as the minimal networkNy,C*) associated with anmt

An mcstp(Ng,C*) is irreducible if and only if there exists a treein (Np,C*) that
satisfies the following two conditions:

(A1) tislineal, i.e.t = {(m% 1, &) }o_; wheremp = 0.

(A2) GivenTiy, Ty € No with p < g, C7p 7, = S‘gl%gq c,TH,,S}.

Moreover,t is anmt. Given anmcstp(Ny,C), we say that the agentonnect to the
source via tin the orderrfollowing Prim’s algorithmif t” is obtained through Prim’s
algorithm and in stage, the arc selected iéng, np), for eachp. We defineC** as
follows: for all 71, 5 € No with p < q,

Cnprh = s\rgl%;(q{cré)ns} .
The mestp(Np,C*) is the irreducible form ofNy,C), i.e. C** = C*. Moreover,t =
{(T&-1, %) }o_; is anmtin (No,C*) that satisfiegAl) and(A2).

Let (No,C), (No,C’) andi € N be as in the definition ofLC. We assume that there
exists a unique argj, k) such thatj, # c’jk. The general case can be derived from this
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case using similar arguments to those used BigmdK. We assume, without loss of
generality, thatj, < cj. Sincecj, < cjx < ¢™", we deduce thats# j andi # k.
We consider three cases:

1. There exists amt t = {(1%,1) },_, in (No,C) such thatj,k) e t.

Assume, without loss of generality, thiak k, k® = j, and that the agents connect
to the source (i) viat in the orderrr= (1, ..., n) following Prim’s algorithm.

Sincet is anmtin (Np,C) and(j,k) € t, we have that is anmtin (Np,C’). Let
m = (m,...,m,) such that the agents connect to the sourc&(jrvia t in the
ordert following Prim’s algorithm.

We can findr’ such that for each = 1,..., j, we havel = 1 and cZ‘l_l)l =
Ci_1 = Gor-

Let p be such thak = ;. Thus,j < p <k. Moreover, we can choqsa! such
thatl = 7j foralll = j+1,..,p—1 andczjfl)I = Cﬁllﬂ = Cjo; < ™" for all
I =p,...k

Assume that we can finth € N such thatm > k, ¢, ), = Cyom = cmn. and
€1y =Ci_1y =G0 < c"nforalll =k+1, ..., m—1. Then, forall =m....,n,
| =m andc)_; = ¢ 4 =Go. Sinceco <™ foralll=p,..m-1we
deduce thatf =i. Moreover, < jori > m.

If we can not findn as above, them' =i < j. In this case we taken=n+1.

We now prove thatj = ¢ for all | € No\ {i}. We assume that< j (the case
i > mis similar and we omit it). BYA2), itis trivial to see that;; = ¢;* whenl <

j.If j<I <m-1, thenc] =cfj =¢j =¢. If | >m, ¢ :max{c;*j,cfmflﬂ}:
max{c{]—*,c’(’;mlﬂ} =G

In Bergantios and Vidal-Puga (2007a, Lemma @}), we proved thaFTM
satisfiedOC in the class of irreducible matrices. Th#sT M; (Ng,C*) = FTM;
(No,C™*). From Berganfios and Vidal-Puga (2007a, Definition 3.1), itis straight-
forward to check that for athcstp(Np,C), FTM (No,C) = FTM (Np,C*). Hence,
FTM (No,C) = FTM (No,C').

2. Forallmttin (No,C), (j,k) ¢ t. Moreover, for alimtt' in (No,C'), (j.k) ¢t
Lett be anmtin (No,C). Thus,t is also airmtin (No,C’). SinceFT M satisfies
HT,FTM (No,C) =FTM; (No,C).

3. For allmttin (No,C), (j,k) ¢ t. Moreover, there exists antt' in (Np,C’) such
that(j,k) et’.

Clearly,m(No,C) > m(No,C’) . We define thencstp(No,C") wherec]y = ¢, +
m(No,C) —m(Ng,C’) andcj/,, = cim otherwise. Notice that > C” > C'.

It is trivial to see that ift is anmtin (Np,C), thent is anmtin (No,C"”). Since
FTM satisfied I T, FTM; (No,C) = FTM (No,C").

AUCO Czech Economic Review, vol. 2, no. 3 265



G. Bergantios, J. Vidal-Puga

By Case 1FTM (No,C") = FTM (No,C').

FTM satisfies|LC. SinceF T M satisfiedIT, under Proposition 1 (iii), it hold<.]
In the Table 1 we summarize the results obtained in Theorem 1.

Table 1. Rules and its properties as stated in Theorem 1

B K DK FTM
CS v - v
CM - v v v
SCM - - - v
PM - - - v
CON - v - v
POS v - v v
SEP - - - v
SYM v v v v
ESEC v v - v
"nT - - - v
ISC v v - v
ILC - - - v

4. Concluding remarks

We have studied different properties that are defined initbeature of cost allocation
in minimum cost spanning tree problenmdstp. Most of these properties have been
previously studied in the literature and applied to somegulHowever, not all the
properties had been checked for all the rules. In this pagesiillithis gap. There are
other properties that have been studied in the literature béfly comment three of
them: consistency, additivity, and strategic merging.

The idea oftonsistencys the following: Some agents pay the allocation that some
rule assigns to them, and connect to the source. The rest afjints face the resulting
mcstpand pay the allocation that the same rule assigns to thensi§€ency states that
the final allocation is the same as before. Two different prtgs of consistency are
used to characterizBK defined (Dutta and Kar, 2004, Theorem 2) & (Dutta and
Kar, 2004, Theorem 3), respectively.

Additivity implies that the solution for the sum of two problems showddie sum
of their respective solutions. This property is too strond ao rule satisfies it. A
restricted version of additivity is used to charactefZeM in Branzei, Moretti, Norde
and Tijs (2004) and Bergaiitbs and Vidal-Puga (2005).

Strategic mergingarises when a group of agents manipulates the allocation by
merging and acting as a single node. It is of interest thatmmrdvement be possi-
ble via strategic merging. Among the above rules, dhlatisfies this property in an
wide class of problems. Non-strategic merging is used toecherizeB in Gomez-Ria
and Vidal-Puga (2005) andzsoy (2006).
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