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Abstract In this paper a discrete optimization problem under uncertainty is discuSsédng
such a problem can be seen as a game against nature. In order $e ehsmution, the minmax
and minmax regret criteria can be applied. In this paper an extensioe kihtiwn minmax (re-
gret) approach is proposed. It is shown how different types ofrtaiogy can be simultaneously
taken into account. Some exact and approximation algorithms for clgpadiest solution are
constructed.
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1. Introduction

Decision making under uncertainty is an important areasgaech in economy. If one
tries to describe a given system, some parameters oftermaaph®se values are not
precisely known. This uncertainty can be seen as a featutieeafature. In one of
the most popular approaches to hedging against such uimtgreaset of all possible
realizations of the parameters is specified. Every padia@alization is called sce-
nario and, in the simplest case, no probability distribution ie itenario set is given.
The decision making process can be seen as a zero-sum gamst agaure (Luce
and Raiffa 1957). To guarantee a certain payoff, we may vashake a decision that
has the best performance under the worst scenario which p@saa This leads to
applying well known game theoretic criteria, namely the mérx and minmax regret
ones. Under the minmax criterion we choose a decision whaseénmal cost over all
scenarios is minimal and under the minmax regret one we ehaatecision whose
maximal regret (opportunity loss) over all scenarios isimal. The minmax regret
criterion was first suggested by Savage (1951).

In a wide class of decision making problems we seek a cheapgstt composed
of some elements of a given finite set. This class is calisttete optimization prob-
lems. Suppose that we explore a part of a communication netwoekc& model this
network as a grapls = (V,E), where a finite set of edgdSrepresents roads. Every
roade € E has an associated cagt which may for instance express a traveling time
of e. A decision consists of choosing a best path between twawoirthe network.
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Under deterministic costs the cheapest path can be found amy inown and effi-

cient algorithms (see e.g. Ahuja et al. 1993). The situatimmwvever, is more complex
if precise values of the costs are not known. In this case viielmve a scenario set
containing more than one cost realization which may occurceSnow the total cost
of a path is not known, we must use some additional criteriaa&e a decision. We
may treat this problem as a game against nature, that is #isge#ayer who always

tries to increase the cost of our decision. We may thus ayglyrtinmax or minmax

regret criterion to choose a path.

The minmax (regret) approach to discrete optimization htaaced a consider-
able attention in recent decade. Many results in this arga haen described in a
book by Kouvelis and Yu (1997). Since the 1997's book a nunab@apers devoted
to this approach have appeared (e.g. Aissi et al. 2005, 28@nh and van Henten-
ryck 2004, Averbakh 2001, Averbakh and Lebedev 2004, Coffd 2Kasperski and
Zielihski 2006, Yaman et al. 2001). Some surveys of recent resaiitde found in a
paper by Aissi et al. (2008) and in a book by Kasperski (2008)yeneral, the prob-
lem with more than one possible cost realization turned oliet more complex to
solve than its deterministic counterpart. The exact metfud@btaining a solution are
based on a mixed integer programming formulation (Kouvatid Yu 1997, Yaman
et al. 2001) or a branch and bound procedure (Kouvelis and99d ,IMontemanni et
al. 2004, 2005). There are also some approximation algositthat can be used to
obtain an approximate solution in polynomial time (Aissia&t2007, Kasperski and
Zielihski 2006). In this paper we propose a new robust model, iclwétenario set is
a union of a finite number of so callédterval scenarios. We generalize in this way
the robust models discussed in literature. This new typecefhario set allows us to
take into account different kinds of uncertainty, which bhagn treated separately in
literature so far. We also focus on some exact and approximatethods of solving
the constructed problems.

This paper is organized as follows. In Section 2 we brieflyallecvery simple and
well known minmax (regret) decision making model. We introel some notations,
which will be next extended to a problem with more complexaiure. In Section 3
we generalize the minmax (regret) decision making modéteécctass of discrete op-
timization problems. We recall a known approach and we @ejits extension based
on a set of interval scenarios. Section 4 is devoted to sontkatie of solving the
constructed problems. We design a mixed integer progragmmiodel, which can be
solved by a standard software and, for large problems, weosean approximation
algorithm.

2. A simple minmax (regret) decision making model

In this section we recall a well known and very simple decisitaking model (see e.g.
Luce and Raiffa 1957). In the next sections we will show hoaribtions and concepts
introduced here can be naturally extended. We are giventa fiet of element& =
{e1,...,en}. A decision consists of choosing a single element from theEetlLet
C=[Cq,---,Ce,) be vector of nonnegative real numbers, wheyes a cost of element
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e c E underc. We will useF(e,c) = ce and F(c) = minece F(e,c) to denote the
cost ofe underc and the cost of a best decision unaerespectively. The quantity
D(e,c) = F(e,c) — F(c) is called aregret of decisione underc and it expresses an
opportunity loss when decisiomis chosen under costs In a deterministic case,
where there is only one cost vectwe simply choose a decision having the smallest
cost or, equivalently, whose regret equals O.

Assume now that the cost vector is not known in advance. ddstéa single vector,
there is a finite sef = {c',...,cX} of cost vectors called scenario set. Everyscenario
¢l e I may appear with positive but perhaps unknown probability, V@ know that
exactly one cost realization fromwill appear but it is not possible to predict which
one. The problem of choosing a decision can be seen as aw@argame against a
specific player called a nature. In this context, the scersatl” represents all possible
states (strategies) of the nature. In order to make a decfgio criteria are widely
applied, namelyminmax and minmax regret ones. Under the minmax criterion we
chose a decision whose maximal cost over all scenarios ismainthat is we solve
problem miRcg max.r F(e,c) and under the minmax regret criterion we choose a
decision whose maximal regret over all scenarios is minithak is we solve problem
mMinece Maxer D(e, ¢). We will call the decisions obtained by solving both probéean
minmax andminmax regret decision respectively.

A deeper interpretation and a critical discussion on boiteria can be found in
books by Kouvelis and Yu (1997) and Luce and Raiffa (1957)gdneral, we should
apply the minmax criterion if we only wish to minimize the ta$ our decision. On
the other hand, the minmax regret criterion is appropribigei have a competitor
and we wish to minimize his superiority over us. In this cagemay assume that
our competitor always chooses a best decision under evenaso and choosing a
minmax regret decision we minimize the maximal dominanceefcompetitor. This
may be more important that simply minimizing the maximaltcos

3. Minmax (regret) discrete optimization problem

We now show how the simple decision making problem desciibéite previous sec-
tion can be extended. Suppose that, in additioR tave are given another sét that
contains some subsets Bf that is® C 2El. The set® is called a set ofeasible
solutions and now decision consists of choosing a feasible soluXiech®. Extend-
ing the notations from the previous section, we will IBEX,c) = S..xF(ec) to
denote the cost of solutioX underc and byF (c) = minkcs F(X,c) the cost of a
best (optimal) solution under. We can express the regret of solutisnunderc as
D(X,c) = F(X,c)—F(c). Atriple (E, ®, c) is called adeterministic discrete optimiza-
tion problemand our aim is to choose a best solution under the only cos&tagan c.
Using different descriptions of the sétwe get different problems. In an important
class ofnetwork problems, E is a set of edges of a given gragh= (V,E) and® con-
tains subsets of edges that form, for example, paths, spgineiss, perfect matchings,
cuts etc. inG. If E is a set of items, the® may contain all subsets of items whose
cardinalities are precisely (the minimum selecting items problem). This problem can
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be generalized by introducing a positive capagigyfor every iteme € E and® con-
tains then all subsets of items whose total capacities dexesed a given numbé.
This is well known 0-1 knapsack problem. A comprehensivéerg\of various prob-
lems can be found for instance in books by Ahuja et al. (1988)Rapadimitriou and
Steiglitz (1998).

Suppose now that, similarly to the problem discussed in teeipus section, we
are given a finite set of scenarids= {c,...,c¥} that represent some states of the
nature, that is some possible vectors of the element costhwiay occur. In order
to choose a solution we can use exactly the same reasoning $ection 2. The
only significant difference is that now decision set is gibgn®. So, we may seek a
minmax solution minimizing the maximal cost or @inmax regret solution minimizing
the maximal regret over all scenarios frdm These solutions can be obtained by
solving the following optimization problems:

MiNMAX : minmaxF (X, c),
Xed cel

MINMAX REGRET. minmaxD(X,c).
Xed cel
Example 1. Consider a sample problem shown in Figure 1. In this probtem
{e1,...,es} is asetof arcs of a given directed graph- (V, E) and® contains all sub-
sets of the arcs that form paths between ned®dt in G. So,® = {{e1,es1},{ey, €3,
e}, {ex,e5}} contains three decisions (paths). We have two possibleasosn so
I = {c!,c?} and the costs under both of them are shown in the table in &iur

Figure 1. A sample shortest path problem with two deterministic scenarios

It holdsF (c) = 5 andF (c?) = 6. In other words, the shortest path undkhas cost 5
and the shortest path underhas cost 6. Consider a sample pth- {e1,e4}. This
path has the cost 7 under scenasfoand 8 underc?. It also has regret equal to 2
underc! and 2 undec?. So, the maximal cost of under all scenarios is 7, while its
maximal regret over all scenarios is 2. It is easy to checkXhia the best path under
both minmax and minmax regret criteria. It is, however, i neither undec! nor
c2. It is a compromise solution that has the best performantieeimorst case.]
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There is one very significant difference between the disaptimization problem
and the decision problem described in Section 2. The solgace (the cardinality
of @) in a discrete optimization problem is typically exponahin the number of ele-
ments inE. So, for real problems, we cannot find a best solution by sirapploring
the whole setb. Unfortunately, a general efficient algorithm for compgtanminmax
(regret) solution probably does not exist because suchgmabas shortest path, mini-
mum spanning tree, minimum assignment, minimum cut andmim selecting items
turned out to be NP-hard even for 2 scenarios (Aissi et al52R6uvelis and Yu 1997,
Yu and Yang 1998). In order to obtain a minmax (regret) sofutive can use a mixed
integer programming formulation or a branch and bound &lgordescribed by Kou-
velis and Yu (1997). Also, Aissi et al. (2005) showed thatemithe assumption that
a deterministic problem is polynomially solvable, its migxn(regret) version is ap-
proximable efficiently within the number of scenarlosHowever, some recent results
proven by Kasperski and Ziélski (2008) suggest that the minmax (regret) versions of
such basic problems as shortest path, minimum assignmémhgammum cut are hard
to approximate within lof ¢k for any & > 0. We thus can see that introducing more
than one scenario significantly increases the problem caxitpl

3.1 An extension of the minmax (regret) approach

In practice, a problem with scenario $etsuch as the one shown in Example 1, may
be still not appropriate. Suppose that the graph shown iarEig models a part of a
communication network and the cost of &e E is a traveling time of this arc. Two
scenarios in this problem may correspond to two possiblatse\aich as traffic loads.
Of course, a traffic load has a global influence on the netwiodesan obstacle in one
road influences some other roads. So, defining several elifféime scenarios is a
good way of modeling such a situation. Notice, however, #isking about a traveling
time, even assuming that a particular event will happen,angly get a precise answer.
The traveling time is an example of a parameter whose nasuraprecise. In other
words, a traveling time of a road may vary independently envéidues of the traveling
times of the remaining roads. Therefore, under every s@eitanay be reasonable to
specify a range of possible traveling times instead of asivgue. We now show how
such uncertainty can be taken into account in the approastrided in the previous
section.

Suppose first that the element costs are given as closeddtgeHence the inter-
val [c.,Te] contains all possible values of cost of elemert E. We assume that the
element cost may take any value from this interval indepetiglen the values of the
costs of the remaining elements. l&be a Cartesian product of all these intervals,
namelyC = xecg[Cq, Ce]. Observe that contains infinite number of possible cost re-
alizations. Assume now that scenario set is giveh ast! U--- UgX, whereg!, ... &
are callednterval scenarios. The scenario sét generalizes scenario getaind models
two types of uncertainty. Different interval scenariosrespond to atructural uncer-
tainty having a global influence on the considered system; thevialewithin every
interval scenario model Bocal uncertainty connected with the imprecise nature of a
single cost. We consider now the following natural geneeadions of the MNMAX
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and MINMAX REGRETproblems:

MiINMAX : minmaxF (X, c),
XeP cef

MINMAX REGRET. minmaxD(X,c).
Xe® cef

Example 2. Consider a shortest path problem shown in Figure 2. We havé@terval
scenario€! andé? in the problem. S@* = [1,3] x [5,6] x - -- x [2,3] and& = [2,5] x
[3,5] x -+ x [2,2]. We obtain§ = &' UE. For a sample path = {ey,e4} the maximal
cost over alc € T is 10 and the maximal regret is

Figure 2. A sample problem with two interval scenarios

€4

e | & @

e | [1.3] [29]

. . e |B6 B
es | [11] [2.8]

e | [3,6] [4,5]

Let us denote b € € a cost realization in which all elementsc E have cost<e.
Obviously maxzF (X,c) = F(X,c) and

minmaxF (X,c) =min  max F(X,c). 1)
Xed cef Xe® cerel . TF)

Notice that (1) is a MNMAX problem with scenario sét= {c',...,c*}. We thus can
see that the problem with interval scenarios can be eaaigtormed to an equivalent
MINMAX one with deterministic scenarios. We can now use any knogorighm
for the MINMAX problem to solve (1). In particular, the MIP formulation ati
known approximation algorithms can be directly applied.t us denote bycx € €

a cost realization in which all elemengse X have costge and all the remaining
elements have costs. It is well known (see e.g. Kasperski and Zfedki 2006) that
max.zD(X,c) = D(X,Cx). In consequence

minmaxD(X,c) =min  max D(X,c). 2
XeP cef Xed ce{éi, E?}

Contrary to (1), there is no easy transformation of (2) toNheMAX REGRET prob-
lem with deterministic scenarios. It follows from the fahbat, contrary to the M-
MAX problem, the scenario s€t= {C>1(,...,CI§<} in (2) depends on solutioK. The
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problem (2) is not trivial even if there is only one intervaésarioC. In this particular
case we get the following problem:

minD(X,tx) = min{F (X, tx) — F (&)} 3)

The problem (3) is well known and widely discussed in litarat(see e.g. Kasper-
ski (2008) for a survey). This is a minmax regret discretenojzition problem with
interval costs. In most cases it is NP-hard even if the detgstic problem is polyno-
mially solvable (Aissi et al. 2005, Aron and van Hentenry6k2, Averbakh and Lebe-
dev 2004). However, for (3) an efficient 2-approximationoaitpm is known (Kasper-
ski and Zielhski 2006). Note that in problem (3) only the local unceftiis taken
into account.

4. Solving the minmax regret problem with a set of interval senarios

In this section we will focus on solving the MMAX REGRET problem with scenario
setf. We will provide an exact algorithm based on a mixed integegmmming
formulation and we propose a simple approximation algovjtivhich is fast if only
the deterministic problem is polynomially solvable.

4.1 Mixed integer programming formulation

Let us assign binary variable< {0, 1} to every elemergy € E. This variable will indi-
cate whether elemeef is contained in the constructed minmax regret solution.r§ve
solutionX € ® can be described by a characteristic veeter [x1,...,X,| € {0,1}"
wherex; = 1 if and only if g € X. We will assume that the set of all characteristic
vectors can be described by some set of linear constraithe ddrm.czx" = b, where
o/ is a matrix andb is a vector of fixed coefficients. Of course, we also allow sign
< and> in some constraints since they can be transformed to eigsaliy adding a
number of additional slack variables. We will assume thatrimay’ is totally unimo-
dular. Recall that in a totally unimodular matrix all its mgular square submatrices
have determinants -1 or 1. This assumption restricts ttes @dficonsidered problems.
However, the solutions of many important problems such astest path, minimum
spanning tree, minimum assignment or minimum cut can beritbescby a system
of linear constraints with a totally unimodular matrix (see e.g. Ahuja et al. 1993,
Papadimitriou and Steiglitz 1998, Garfinkel and NemhauS&2)L

To simplify notations, suppose that ti¢h interval scenarié! is Cartesian product
of intervals [Qi’,(:i'] for all € E. Using (2) we can rewrite the MMAX REGRET
problem as follows:

minA
FIX,g)—F(@) <A j=1....k
Xeod
A >0,

(4)
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whereF (C§<) =Minyco F(Y,d(). We fix X and consider subproblem rqigy F (Y,C>j<).
Using binary variables representiXgandY and the definition of the cost realization
é§(, we can represent this problem as follows:

n . .
min 3 (G -+l (1%l
i=
Ay =b
yi €{0,1} i=1,....n

Using the assumption that matrix is totally unimodular, we can relax constraigis
{0,1} obtaining the following problem that has the same minimgéctive function
value: .

min Zl[ti’m +¢ (1-x))yi

F (5)

Yy =b

0<y;<1 i=1,...,n
We can now construct a dual problem to (5). Lébe a vector of dual variableg(u!)
be the objective of the dual and I&¥ (x) be the set of feasible dual vectors. So, the

dual is max;cyi ) @(ul) and it is linear with respect to bot' andx. The strong
duality theorem now implies

2 &Y — mi sy j
F(T) \r(ryQF(Y,CX) ujrenﬁ?x)(p(u ).

SinceF(X,d() = z{‘zléijxi, model (4) can be rewritten as follows:

minA
n .
tx— max eul)<A j=1,....k
i;|I ujewi(x)qo( )< J ©
X" =b
x; € {0,1} i=1...,n
A>0

We can skip the maximum operator in (6) obtaining the follogvequivalent model:

minA

n . .

Zq’xi—(p(ul)g;\ i=1....k

i=

X" =b ()
ul e W(x) i=1....k

xi € {0,1} i=1...,n

A>0

The formulation (7) is a mixed integer linear programmingdeicfor MINMAX  RE-
GRET with scenario sef = & U---UE. It can be solved by using a standard and
powerful software such as CPLEX or GLPK.
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Example 3. We illustrate the presented framework by an example. Sugpoet
E = {ey,...,en} is a set of items and we wish to select exagtlyf them, where
p > 0 is a given integer. This problem, callednimum selecting items, has been dis-
cussed by Averbakh (2001) and Conde (2004). The solutiosetthis problem
can be described by the single constraipt- xo + --- + X, = p. Obviously, matrix
o =[1,1,...,1] is totally unimodular. The relaxed subproblem (5) takesdllewing

form:
n

mmZWM+du—mm

- ®
YitYot+Yn=p

0<y;<1 i=1,...,n

Assigning dual variablem(jJ to the equality constraint and dual variabu{s. . .,u,’} to
constraints; < 1,i=1,...,n, we get the following dual model:

i i

Maxpu) —Uj —-- —u
up—u <tix+c(1-x) i=1...,n
ui]ZO i=1,...,n
Consequentlyp(ul) = pu) —ul — .. — u} and setVi(x) is described by thercon-

straints of the dual model. We are now ready to design the MiBeahusing formula-
tion (7). This model takes the following form:

minA

S o LS <A o1k
TX—puy+ ) U < i=1...,

_;. o i;.

|
n

2P

up—u <tixi+c(1-x) i=1...nj=1..k

u >0 i=1...nj=1...k
x; € {0,1} i=1,...,n
A>0

The obtained problem can be solved by using a standard geftina

4.2 An approximation algorithm

The main drawback of the minmax regret approach is thatdoitimg more than one
possible cost realization may dramatically increase the tiequired to solve the prob-
lem. Therefore, for large problems, the timed required twesthe mixed integer
programming model designed in the previous section may téotrgy. Furthermore,
this model can be applied only to the problems fulfilling s@pecific assumptions.
In this section we design an approximation algorithm for pheblem. The idea

is to solve a deterministic problem for a particular costteeconstructed front .
Therefore, the approximation algorithm will be general @énchn be applied to any
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discrete optimization problem under the assumption thatare solve somehow its
deterministic counterpart.

Before we proceed we introduce some additional notationshwivill simplify
further considerations. Let us defidé(X) = D(X,cy) andD(X) =max_1__kD/(X).
Now, using (2), we can see thelNMAX REGRETproblem is equivalent to minimizing
D(X) over allX € ®. Le also denot®PT = minxeco D(X), SOOPT is the maximal
regret of an optimal minmax regret solution. ConsiderG®RITHM AM shown in
Figure 3. This algorithm forms first a particular cost reatlian c using the scenario
setl” and returns then an optimal solution under

Figure 3. An approximation algorithm for the MiMAX REGRETproblem

ALGORITHM AM
Require: A MINMAX REGRETproblem with scenario sét= {&',...,&}
Ensure: A feasible solutiorY € ®

1: forall ec E do.

2: Ce— 21 1(ce+ ce) {Form a cost vectoc}

3: end for

4: Output an optimal solutiod € ® under cost vectot

Notice that fork = 1 ALGORITHM AM boils down to the 2-approximation algorithm
constructed by Kasperski and Zigki (2006). AGORITHM AM can also be viewed
as a generalization of tHeapproximation algorithm proposed by Aissi et al. (2007).
If we apply the algorithm to the problem from Example 2, thea meed to solve
a deterministic shortest path problem for the cost veft@r19,12,18 9] and as a
result we get patiX = {ey,e5}. We now explore the quality of a solution returned by
ALGORITHM AM.

Theorem 1. ALGORITHM AM outputsa solution'Y € @ such that D(Y) < 2k« OPT.

Proof. Let X € ® andY € ® be two feasible solutions. The following two formulas
have been established by Kasperski and d#i (2006):

DIX)> Y c— Y c 9)
ecX\Y ecY\X
DI(Y)<DI(X)+ § c— ¥ d (10)
ecY\X ecX\Y

Inequalities (9) and (10) imply

i' i

Y - 4 : (12)
ecX\Y

™M~
U_
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Assume that is the solution returned by AGORITHM AM. Then, for anyX € ®

k k
22 (ch+t)) < ;z (cl+7ch),
ey j=1 =1

which, after simple algebraic manipulations, is equivaten

A RESREE AR AT T R

Now formulas (11) and (13) imply
K . k . .
3 Dix)> [ Y -3 c47
which together with (12) yield
. j . i
j;D (Y) < 2,;[) (X). (14)

Inequality (14) implies

‘max D/(Y) < 2k« max DI(X).
j=1,...k j=1..k

In particular, ifD(X) = maxi—1__xD!(X) = OPT, thenD(Y) = max_1,
2k OPT, which completes the proofl

Observe that if the deterministic problem is polynomialiywable, then AGORITHM
AM runs in polynomial time. So, it can be used to obtain apprate solutions for
very large problems. However, this algorithm can also bdiegjif the deterministic
problem is NP-hard. But in this case its running time may ktepod/nomial.

4.3 Computational tests

In this section we present some results of computationtd.t€ut aim is to compare
the MIP formulation to AGORITHM AM designed in the previous section. We wish
to identify the factors that have the most influence on themgation times and on
the quality of solutions returned by&oRITHM AM. The tests were performed on
the minimum selecting items problem described in Sectidn(gee Example 3). Let
us denote byn,k,d) a family of minimum selecting items problems where:

(i) nisthe number of items. We fig = [n/2] to obtain the largest solution space.
Notice that the size ofb is ( (n?Z} ) which becomes a huge number for

rather smalh.

(i) kis the number of interval scenarios.
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(i) d is a degree of uncertainty of the interval scenarios. Najelgry interval
[QiJ,CiJ] is generated randomly so that it is fully contained in thenwal [0,100]
and its width is such tha — ¢/ <d.

In our tests we have chosen= 60,80,100,k = 2,3,4,5 andd = 20,40,60. For
every combination oh, k andd we have generated and solved 10 instances. All the
tests were performed on a computer equipped with a Core [B@&Hz processor with
1GB RAM. The GLPK 4.21 solver was used to solve the MIP modé&ls obtained
results are shown in Table 1. In column tm. the average caatipattimes in seconds
required to solve the MIP formulation and obtain an optinsdiSon are shown. In the
next three columns the percentage average, minimum andmwaeaxideviations from
optimum, i.e. the values of 10D(Y) — OPT)/OPT, reported for solution¥ returned
by ALGORITHM AM are shown.

Table 1. The results of computational tests

family tm. av. min ma* family tm. av. min ma* family ~ tm. av. min max
(60,2,20) 0.0 17.0 0.0 23@30,2,20) 0.0 9.7 0.0 3%.(]100,2,20) 0.0 12.0 2.1 217

(60,2,40) 0.0 18.8 5.3 40(80,2,40) 0.0 14.8 7.8 1900,2,40) 0.6 17.8 2.5 32.1
(60,2,60) 0.4 16.9 4.16 27(80,2,60) 0.9 12.0 5.6 20(100,2,60) 6.1 8.5 0.1 24.6

(60,3,20) 0.4 17.8 0.0 4%(430,3,20) 0.9 13.17.4 2%(&00,3,20) 1.8 16.4 3.0 31.1

(60,3,40) 1.0 19.9 6.0 40(®0,3,40) 1.5 14.8 2.9 30(00,3,40) 5.6 16.6 5.7 23.0
(60,3,60) 6.8 19.1 3.2 32(B0,3,60) 16.4 14.0 6.2 20(200,3,60) 369.4 17.3 8.1 26.0

(60,4,20) 1.8 19.0 6.2 3A7F30,4,20) 4.6 22.6 9.0 43(&00,4,20) 9.1 16.4 5.5 30.2

(60,4,40) 3.5 19.0 2.7 3[(80,4,40) 10.5 14.6 2.0 31(200,4,40) 445 149 6.2 33.4
(60,4,60) 57.414.8 4.3 27(80,4,60) 421.2 16.0 3.4 33(200,4,60) 1074.2 16.0 6.8 30.0

(60,5,20) 5.5 21.6 6.5 53(30,5,20) 17.0 23.2 4.6 43(&00,5,20) 65.6 16.9 7.2 22.8

(60,5,40) 6.1 20.113.5 25(80,5,40) 28.2 22.7 9.0 30(300,5,40) 254.0 16.511.0 25.0
(60,5,60) 42.8 19.0 9.6 37/(80,5,60) 558.517.1 7.3 25(600,5,60)>3600 ? ? 2

Note: ‘tm. denotes the average computation times in secorglsresl to solve the MIP formulation;
‘av./, ‘min’, ‘max’ denote the percentage average, minimum an&imam deviations from optimum
reported for a solution returned byt AORITHM AM, respectively.

As we can see from the obtained results, the computatiorstinezease with the
number of items and the number of scenarios, which is notrisimg. However, the
increase with the number of scenarios is very quick - espgda@ the families with
100 items. The MIP formulation is efficient only if the numlzdrscenarios is a small
number. Interestingly, the computation times also incresith the degree of uncer-
tainty d. Notice that we were unable to solve the family00,5,60) within less than
1 hour. For larger problems, having a large number of intessnarios, AGORITHM
AM should be used. Observe that the largest percentagetidevfeom optimum re-
ported for all generated 350 instances is 56.1%, while tkes@e percentage deviation
over all instances is about 17%. So, the average perfornafribe approximation al-
gorithm seems to be much better than its theoretical woss bahaviour. Therefore,

248 AUCO Czech Economic Review, vol. 2, no. 3



Making Robust Decisions in Discrete Optimization Problems as a Game abjaituse

the simple approximation algorithm is a good choice if thé°Mblver fails to compute
an optimal solution in a reasonable time.

We have performed the tests for a particular problem. Weesmbaje, however,
that a similar performance will be reported for other profide In particular, the same
factors will influence on the computation times.

5. Conclusions

In this paper we have proposed an extension of the known mirfregret) approach
to discrete optimization. This approach allows us to model different types of un-
certainty. The first, called a structural uncertainty, nisd®me unpredictable events
having a global effect on a considered system and the secaildd a local uncer-
tainty, is connected with an imprecise nature of costs. We lr@roduced scenario set
i being an union of a number of interval scenarios. In ordethtmose a solution we
have applied minmax and minmax regret criteria. In mostctsediscussed approach
leads to problems which are computationally hard. Havinguiqular problem one
can try to apply a mixed integer programming formulation lbdéain a solution. If it is
not possible or an optimal solution cannot be obtained iraaagwable time, then the
proposed approximation algorithm can be used.
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