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1. Macroeconomic Models 

In this article we try to revive traditional models based on the IS-LM structure. 
Such models are different from the models which utilize the micro-foundations of 
macroeconomic theory or rational expectations and nowadays prevail in modern ana-
lysis, but they are still the subject of analysis in many professional journals and 
books.1 We provide a non-linear reformulation of models of IS-LM structure to better 
comprehend the nature of the economy, which contradicts linear principles. In this 
way we get non-linear models and try to analyze them with the help of appropriate 
methods.  

For the non-linear model presented here we found inspiration in (Chiarella et al., 
2000). This book introduces the IS-LM-PC model. PC denotes that the IS-LM model 
is augmented by price-wage dynamics, i.e., by the modified Phillips curve, including in-
flation expectations. We develop this model in the following way. We replace the price- 

* Department of Econometrics Institute of Information Theory and Automation, Academy of Sciences of 
the Czech Republic, and Institute of Economic Studies, Faculty of Social Sciences, Charles University in 
Prague. Contact: vosvrda@utia.cas.cz. 
1 In (Turnovsky, 2000) we can find not only models of traditional macro-dynamics, but also models of 
inter-temporal optimization and rational expectations models. The last two represent the majority approach 
to the modern analysis of economic systems. 
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-wage dynamics by price-marginal cost (PMC) dynamics. The modified model will 
be denoted IS-LM-PMC.  

The IS-LM-PMC model is structured as four differential equations. The first 
equation describes the commodity market, the second describes the money market, 
and the third describes the relationship between marginal cost and prices. The fourth 
equation deals with inflation expectations. We assume adaptive expectations. The left- 
-hand side of the commodity market equation (1) contains the gap between demand 
(investment) and supply (savings) in the aggregate commodity market. The left-hand 
side of equation (2) contains the gap between money supply and money demand. 
And the left-hand side of equation (3) contains the gap between the price level and 
marginal cost. Notice that from the general point of view the IS-LM-PMC structure 
could be common to both the Keynesian and neoclassical approaches. The difference 
lies only in the style of imputation of the equalizing factors of the model. The Keyne-
sian approach states that change in production equalizes the commodity market (IS), 
change in the interest rate equalizes the money market (LM), and change in the price 
level equalizes the price level and marginal costs. The neoclassical approach as-
sumes that change in the interest rate equalizes the commodity market (IS), change 
in the price equalizes the money market (LM), and change in production equalizes 
the price level and marginal costs (PMC). This paper aims to analyze the conse-
quences of the Keynesian and neoclassical approaches to the IS-LM-PMC structure 
for the dynamics of the related models. 

We begin with the description of the Keynesian IS-LM-PMC model. Let (in 
continuous time 0t ≥ ) ( )Y t , ( )S ⋅,⋅  and ( )I ⋅,⋅  denote, respectively, the real product, 

savings, and real investments of the considered economy. Recall that for the nominal 
interest ( )R t  it holds that ( ) ( ) ( )eR t r t tπ= + , where ( )r t  is the real rate of interest and 

( )e tπ  is expected inflation, in contrast to inflation ( )tπ .  The dynamics of the IS model 

are then given by the following differential equation – see e.g. (Takayama, 1994)  

{ }( ( ) ( )) ( ( ) ( ))Y I Y t r t S Y t r tα= , − ,ɺ  

or, on taking logarithms, by 

            { }( )
( ( ) ( )) ( ( ) ( ))

dy t
i y t r t s y t r t

dt
α= , − ,        (1) 

where ( ) ln ( )y t Y t= , and ( )
( )

( )
I

i
Y

⋅,⋅⋅, ⋅ =
⋅, ⋅

 and ( )
( )

( )
S

s
Y

⋅,⋅⋅,⋅ =
⋅,⋅

 are, respectively, the pro-

pensity to invest and the propensity to save. Observe that for an equilibrium point 
( )Y t Y≡ ⊻ , ( )y t y≡ ⊻ , ( )r t r≡ ⊻ , we have ( ) ( )I Y r S Y r, = ,⊻ ⊻ ⊻ ⊻  or ( ) ( )i y r s y r, = ,⊻ ⊻ ⊻ ⊻ . 

Denoting by ( )p t  the price level at time t, the dynamics of the money mar-

ket are described by the following differential equation  

           { }( )
( ( ) ( )) ln ( ( ) ( ) ( )) ( ( ))

( )

s
e sdr t M

y t R t y t r t t m p t
dt p t

β β π
  = , − = , + − − 
  
ℓ ℓ         (2) 

where ( ( ) ( )) ln( ( ( ) ( ))y t R t L Y t R t, = ,ℓ ; lns sm M= ; ( ) ln ( )p t p t= ;  and ( )L ⋅,⋅  and 
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sM  are reserved for demand for money and the money supply respectively. In (1) 
and (2), α and β are positive constants signifying the speed of adjustment of 
the respective market.  

To obtain a complete dynamic model of the economy we need to include equa-

tions for expected inflation ( )e tπ  and the price level( )p t . According to (Tobin, 1975), 

for πe (t) the following adaptive equation is valid  

                                     
( )

( ) ( )
e

ed t
t t

dt

π γ π π = −          (3) 

where γ is the coefficient of adaptation and π (t) is inflation. Recalling that 
( )

( )
( )

p t
t

p t
π = =

ɺ
 

 ( )d p t
dt

= , from (3) we immediately get  

     
( )

( ) ( )
e

ed t d
p t t

dt dt

π γ π = − 
 

        (4) 

For what follows we need to express ( )d p t
dt

 To this end we assume that the de-

velopment of the price level ( )p t  over time is in accordance with changes in the so- 

-called cost function ( ( ))C y t . In particular, the well-known condition of profit maxi-

mization 
( )

( ) 0
dC y

p t
dy

− =  is the basis for the following adjustment formula for 

( )p t , where δ  is a constant:  

     ( )( ) ( ) p tdp t dC y
e

dt dy
δ
 
 
 
 
 

= −           (5) 

In fact, the above formula is in accordance with the traditional theory of 
perfectly competitive firms (see e.g. (Laider, Estrin, 1989)) and as such is interpreted 
in many treatises on monetary and price dynamics (cf. e.g. (Flaschel, Franke, 
Semmler, 1997)). 

In what follows we shall use shorthand notations only, i.e., we replace 
( )dp t

dt
 

by pɺ , and do likewise for the time derivativesyɺ , rɺ , eπ , and 
( )dC y

dy
 is replaced by 

( )C y
′

 Moreover, we shall often omit the argument t. Hence, (cf. (1), (2), (4), and (5)) 

using such a model the system describing an economy from the Keynesian point of 
view has the following form:  

          

[ ( ) ( )]

[ ( ) ( )]

[ ]

[ ( ) ]

e s

ee

p

y i y r s y r

r y r m p

p

p C y e

α
β π

γ ππ
δ ′

= , − , 


= , + − − 


= − 
= − 

ɺ

ɺ ℓ

ɺɺ

ɺ

        (6) 
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where ( )i y r, , ( )s y r, , ( )ey r π, +ℓ  and ( )C y  are, respectively, the real investment, 

real savings, real money demand, and cost functions, depending on production y, 
the rate of interest r, (expected) inflation πe, and the price level p.   

Classical models that describe (commodity) price level, interest rate, production 
and expected inflation dynamics have a similar structure on the right-hand sides (RHS) 
of their differential equations, but the left-hand sides (LHS) are permuted as fol-
lows:   

           

[ ( ) ( )]

[ ( ) ( )]

[ ]

e s

ee

r i y r s y r

p y r m p

p

α
β π

γ ππ

= , − , 


− = , + − − 
= − 

ɺ

ɺ ℓ

ɺɺ

                    (7) 

Since for classical models the real product ( )y t  is assumed to be constant, in (7) 

we ignore the equation [ ( ) ]py C y eδ ′− = −ɺ . 

The models just introduced form the basis for the establishment of macroeconomic 

models of price and monetary dynamics. Recall that the vector ( )ey r pπ ∗∗ ∗ ∗ ∗= , , ,x , 

whose elements are obtained as a solution of the following set of equations:  

                   

( ) ( )

( )

( )

e s

p

i y r s y r

y r m p

e C y

π
′

, = , 


, + = − 
= 

ℓ        (8) 

is the equilibrium point of both the Keynesian model given by the set of equations (6) 
and the Classical model given by the set of equations (7). This equilibrium point is 
said to be (asymptotically) locally stable if every solution of the considered system 

starting sufficiently close to ∗x  converges to ∗x  as t → ∞ . Similarly, ∗x  is said to 
be (asymptotically) globally stable if every solution regardless of the starting point con-

verges to ∗x . It is well known (cf. e.g. (Guckenheimer, Holmes, 1986) or (Takayama, 
1994)) that an equilibrium point (and also a stable point) of the system need not exist, 
hence the system is unstable. Recall that having found the equilibrium points, the sys-
tem need not converge to some or any of the equilibrium points (in the latter case 
the system is unstable). Furthermore, if the considered system is unstable and non- 
-linear, then the system can also exhibit limit cycles (i.e., its trajectory remains in 
a bounded region) or even chaotic behavior. In other words, in contrast to the above 
phenomena, stability is equivalent to monotone or oscillating convergence toward 
the equilibrium point. 

To identify chaotic behavior of a macroeconomic model, it is plausible to com-
pare the dynamic behavior of the macroeconomic model with the exponential diver-
gence of nearby trajectories measured by the so-called Lyapunov exponents. The most 
important of these is the maximal Lyapunov exponent, which is negative for stable 
models, positive for unstable models, and infinite for chaotic behavior – for details 
see (Lorenz, 1993). 
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2. Approximation and Linearization of the Models 

To find an analytical form of output ( ) ln ( )y t Y t= , the interest rate ( )r t , ex-

pected inflation ( )e tπ  and the price level ( )p t  we need to assume that the functions 

( )i ⋅,⋅ , ( )s ⋅,⋅ , ( )C ⋅  are of a specific analytical form. As usual, the functions ( )s ⋅, ⋅ , as 

well as demand for money ( )y R,ℓ , can be well approximated by linear functions, 

whereas it is necessary to approximate ( )i ⋅,⋅  and sometimes also ( )C ⋅  by suitable non- 

-linear functions. In what follows, we assume that savings ( ( ) ( ))S Y t r t,  can be well ap-

proximated by the following expression  

  0 1 2 0 1 2( ( ) ( )) ( ) [ ( ) ( )] with 0 0S Y t r t Y t s s y t s r t s and s s, = ⋅ + ⋅ + ⋅ < , , >      (9) 

Hence the propensity to save ( ) ( ) ( )s S Y⋅,⋅ = ⋅,⋅ / ⋅  can be written as  

               0 1 2( ( ) ( )) ( ( ) ( )) ( ) ( )s Y t r t def s y t r t s s y t s r t, = , = + ⋅ + ⋅                  (10) 

Similarly, the demand for money is described by the traditional Keynesian de-
mand-for-money function in the following form  

     0 1 2 3 0 1 2 3( ( ) ( )) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )e e ey t R t y t R t t y t r t t tπ π π, = + − − = + − + −ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ     
           (11) 

where the parameters 0 0 1 2 3i i> , = , , ,ℓ  are given. On the other hand, it is con-

venient to assume that the propensity to invest ( ( ) ( ))i y t r t,  is a product of 1
( ) 1r t +

 

and the so-called logistic function. Hence the propensity to invest is assumed to be 
given analytically as  

( )

1
( ( ) ( ))

( ) 1 1 ay t

k
i y t r t

r t be−, = ⋅
+ +

      (12) 

where the parameters 0k a, >  and b  is an arbitrary real number. Similarly, we shall 

assume that the cost function ( )C ⋅  is also a logistic function given analytically as  

      
( )

( ( ))
1 cy t

h
C y t

de−=
+

       (13) 

where the parameters 0h c, >  and d is an arbitrary real number. Hence  

    
2

( )

(1 )
cy

cy

dC y cdh
e

dy de
−

−=
+

      (14) 

and we can assume that the “central” part of ( ( ))C y t  can be well approximated by 

a linear function  
     0 1( ( )) ( )C y t d d y t= +        (15) 
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Since 0eπ =⊻ , to calculate the values y⊻ , r ⊻ , p⊻ , on inserting (10), (11), (12) 

and (13) into (8) we have  

        0 1 2
1

1 1 ay

k
s s y s r

r be−
⋅ = + +

+ +
⊻

⊻ ⊻

⊻

      (16) 

 

             0 1 2
sy r m p+ − = −ℓ ℓ ℓ

⊻⊻ ⊻       (17) 
 

     1 1ln d defp d= − = −⊻        (18) 
 

In virtue of (18) from (16) and (17) the equilibrium values y⊻ and r ⊻  can be 

found as a solution to  

       0 1 2( ) (1 )
1 ay

k
s s y s r r

be−
= + + +

+
⊻

⊻ ⊻ ⊻       (19) 

 

    0 1 0 21 1
2 1

1 1
( ( ) ) ( )s sr m y y m rd d

 
 
 

= − + + ⇐⇒ = + − +ℓ ℓ ℓ ℓ
ℓ ℓ

⊻ ⊻ ⊻ ⊻         (20) 

 
From (19) and (20) we get  
 

0 01 1 1 1
0 2 1 2

2 2 2 2 2 2

1
1

1

s s

ay

m md ds s s s y y k
be

   
   
    −   

  

   + +
+ − + + ⋅ + − + = ⋅     +  

ℓ ℓℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ
⊻

⊻ ⊻    (21) 

 

Hence finding the solution to (21) and inserting this value into (20) we im-

mediately get the pair of equilibrium points y⊻ , r ⊻ . We can observe that:  

The RHS of (21) is the so-called logistic function – an increasing function hav-

ing an inflection point at 1 lny b
a

=  which is convex in the interval 1(0 ln )b
a

,  and 

concave in ( )1 lnb
a

,∞ ; 

The LHS of (21) is a quadratic function (in fact, for real-life models this func-
tion differs only slightly from a straight line).  

Hence there exist at most three, and in real models usually only one, pair(s) of 

equilibrium points y⊻ , r ⊻  for 0y ≥ . More insight into the properties of the equi-

librium points, especially with respect to stability, can be obtained by linearization 

around the neighborhood of the equilibrium point ( ey r pπ, , , ⊻⊻ ⊻ ⊻ ) with 0eπ =⊻ . To 

check the stability of the linearized model (i.e., that all eigenvalues of the matrix of 
the linearized system have negative real parts), let us recall that all eigenvalues of 
the matrix lay in the union of the Gershgorin circles. The centers of the circles are 
diagonal elements of the matrix and the radius is equal to the minimum of the row or 
column sums of the absolute values of the corresponding off-diagonal elements. For 
details see e.g. (Fiedler, 1981).  
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3. Stability and Speed of Adjustment 
3.1. Keynesian Model 

In particular, on employing (16), (17), and (18) for the Keynesian model we have:  

   
1 2

1 2 2 3

1

1

( ( ) )

( ) ( ) 0 0 ( )( ( ) )
( )( )

( )0 0( ( ))
0 0 0 ( )

( ( ) )

y r

ee

d y t y

dt
D s D s y t yd r t r

r t rdt
tdd t

ddt p t p

d p t p

dt

α α
β β β β

πγ γπ
δ

  
  
  
  
  
  
  
  
     

 −
 
 

− − − −
  −− − +  =
  −
 

− − 
 −
 
 

ℓ ℓ ℓ ℓ

⊻

⊻
⊻

⊻

⊻

⊻

     (22) 

where 

      
( ) ( )

1 1

1 11 1
y ray t ay t

r r r r y yy y

k k
D D

r y r rbe be− −
= = ==

∂ ∂= ⋅ , = ⋅
+ ∂ ∂ ++ +⊻ ⊻ ⊻⊻

 

and 

0 01 1 1 1
0 2 1 2

2 2 2 2 1 2 2

1 1
s s

aym md dk s s s s y y be
d

 
 
 
 

   
    −
   
   

  

   + +
= + − + + ⋅ + − + ⋅ +    

  

ℓ ℓℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

⊻
⊻ ⊻  

 
To verify if the obtained equilibrium point is stable, we shall have a look at 

the eigenvalues of the matrix  

         

1 2

1 2 2 3

1

1

( ) ( ) 0 0

( )

0 0

0 0 0

y rD s D s

d

d

α α
β β β β

γ γ
δ

 
 
 
 
 
 
 
 
  

− −

− − +
=

−
−

A
ℓ ℓ ℓ ℓ                   (23) 

Employing the “nearly” upper triangular structure of the matrix A  we can 
immediately conclude that the eigenvalues 1 2λ λ, ,  3 4λ λ,  of A  are equal to 1dδ γ,  

and the remaining two eigenvalues 3 4λ λ,  can be calculated as the two eigenvalues of 

the matrix  

          1 2

1 2

( ) ( )y rD s D sα α
β β

 
 
 
 
 

− −
=

−
Aɶ

ℓ ℓ
      (24) 

In particular, if the following two equations of the Keynesian model  

          1 2

1 2

( ( ) )
( ) ( ) ( )

( )( ( ) )

y r

d y t y
D s D s y t ydt

r t rd r t r

dt

α α
β β

   
   
   
     

 −
  − − −  =
  − −−
 
 

ℓ ℓ

⊻

⊻

⊻ ⊻

     (25) 
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are stable, then our extended Keynesian model given by (22) must also be stable. 

Obviously, the eigenvalues of Aɶ  are as follows (the symbols tr Aɶ  and det Aɶ  are re-

served for the trace and determinant of Aɶ ) 

2
3 4

1
( ) 4

2
tr A tr A det Aλ  
 ,  
 

= ± −ɶ ɶ ɶ  

and det Aɶ  must be positive in order to exclude the possibility of a saddle point. For 

asymptotic stability Re3 4 0λ , < , hence if 1 2( ) 0ytr A D sα β= − − <ɶ ℓ  both (23) and 

(24) are stable, and if 1 2( )yD sα β− > ℓ  the equilibrium is not asymptotically stable 

and a limit cycle occurs. In particular, the sufficient conditions for stability of matrix 
A  of the considered four-equation Keynesian model are 1 0yD s− <  along with 

1 2y rD s D s− > − , 1 2<ℓ ℓ  or 1 1yD s
β
α− > ⋅ℓ , 2 2rD s

β
α− > ⋅ℓ . An interesting case is 

when the eigenvalues of Aɶ  are purely imaginary, i.e., if 1 0( )yD sα β− = ℓ .  

The Lyapunov exponents for the considered four-equation Keynesian model 
with the following parameter values  

0 1 2

0 1 2 3 2

20, 1, 0 1 0 02 0 1 1 5 0 16 0 07 0 016

0 25 0 4 0 06 0 06 1 0 3 0 65 0 4s

a b s s s

l l l l d d m k

α β γ δ= = = . , = . , = . , = . , = − . , = . , = .

= . , = . , = − . , = − . , = − , = . , = . , = .
 

are presented in Figure 1. The Lyapunov dimension of the Keynesian model attractor 
is equal to 0. This means that the real parts of all the eigenvalues of the Keynesian 
model attractor are negative. Thus the Keynesian model is not a chaotic macroecono-
mic system.  

FIGURE 1  
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3.2 Classical Model 
In particular, on employing (16), (17), and (18) for the Classical model we have: 

             

( )

( )

( )

( )
( )

2

2 2 3

1

( )

0 0 ( )( )
( ) (26)

0 ( )
( )

r

e
e

d r t r

dt
D s r t r

d p t p
p t p

dt
d t

d t

dt

α
β β β

γ γ π
π

 −
 
 

   − − −     = − + −    
    −    

 
 
 

ℓ ℓ ℓ

⊻

⊻

⊻

⊻  

where rD  and k take on the same values as in Section 3.1.   

The Lyapunov exponents for the classical model with the following parameter 
values 

0 1 2

0 1 2 3 2

200, 0 2 1 0 1 1 5 0 16 0 07 0 016

0 25 0 4 0 06 0 06 1 0 3 0 65 0 4 4 5s

a b s s s

l l l l d d m k y

α β γ δ= = . , = = , = . , = . , = − . , = . , = .

= . , = . , = − . , = − . , = − , = . , = . , = . , = .
 

are presented in Figure 2. It shows that one of the Lyapunov exponents for the clas-
sical model attractor is equal to 0. This means that one real part of the eigenvalues is 
zero and the other real parts of the eigenvalues of the classical model attractor are ne-
gative. The Lyapunov dimension for the classical model attractor is also equal to 0. 
Thus the classical model can exhibit a limit cycle. 

4. Conclusions 

Macroeconomic models – the Keynesian model and the classical model – were 
analyzed with respect to both their stability and their speed of adjustment. Using dif-

FIGURE  2 
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ferent analysis methods (eigenvalues and Lyapunov exponents), it was shown that 
the Keynesian model is not a chaotic macroeconomic system. On the contrary, it was 
shown that the classical model can exhibit a limit cycle.  
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