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Abstract: 
Heterogeneous agents’ model with the stochastic beliefs formation is considered. Fundamentalists 
rely on their model employing fundamental information basis to forecast the next price period. 
Chartists determine whether current conditions call for the acquisition of fundamental information 
in a forward looking manner rather than relying on the past performance. It was shown that imple-
mentation of the agents memory can significantly change the preferences of trader strategies. 
The Worst out Algorithm (WOA) is used with considered heterogeneous agents’ model to simulate 
more realistic market conditions. The WOA replaces periodically the trading strategy that has 
the lowest performance level of all strategies presented on the market by the new one. The memory 
length of the new strategy that enters the market has the same stochastic structure as the initial 
strategies. This paper shows an influence of the agent memory as a stochastic process on the hete-
rogeneous agents model with the WOA. Simulations show difference in price returns behaviour 
between two types of agents’ memory length distribution functions (Uniform and Normal). There 
is a significant difference in the values of the Hurst exponent and the variance in these two cases. 
A lower Hurst exponent in the uniform case is caused by a richer spectrum of agents’ memory 
length, because agents are equally distributed across all trading horizons. For the uniform case 
there is no opportunity for any prediction. On the other hand, the value of the Hurst exponent gives 
a signal for a possibility of the price prediction in the normal case. 
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1. Introduction 

Assumptions about rational behaviour of agents, homogeneous models, and efficient 
market hypothesis were paradigms of economic and finance theory for the last years. After 
empirical data analysis on financial markets and economic and finance progress these paradigms 
are gotten over. There are phenomena observed in real data collected from financial markets that 
cannot be explained by the recent economic and finance theories. Introducing non-linearity in 

                                                           
* Both authors: Institute of Economic Studies, Faculty of Social Sciences, Charles University and Institute of 
Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague. Corresponding 
author: vosvrda@utia.cas.cz 



AUCO Czech Economic Review, March 2007, vol.1, no.1 55

the models may improve research of a mechanism generating the observed movements in 
the real financial data. Financial markets are considered as systems of the interacting agents 
processing immediately new information. Heterogeneity in expectations can lead to market 
instability and complicated dynamics. Our approach assumes that agents are intelligent ones 
having no full knowledge about the underlying model in the sense of the rational expectation 
theory and have not the computational equipment to interpret obtained information by different 
ways. Prices are driven by endogenous market forces. Adaptive belief approach is employed – 
see (Brock, Hommes, 1997). Agents adapt their predictions by choosing among a finite number 
of predictors. Each predictor has a performance (efficient) measure. Based on this performance, 
agents realize a rational choice among the predictors. Brock and Hommes showed that the adap-
tive rational equilibrium dynamics incorporates a general mechanism, which may generate local 
instability of the equilibrium steady state and complicated global equilibrium dynamics – see 
(Brock, Hommes, 1997). Vosvrda and Vacha focused on a version of the model with two types of 
trades, i.e., fundamentalists, and technical traders (see (Vosvrda, Vacha, 2002a), (Vosvrda, Vacha, 
2003)). This approach relied on heterogeneity in the agent information and subsequent decisions 
either as fundamentalists or as chartists. A more detailed analysis is introduced in the Brock and 
Hommes model (Brock, Hommes, 1997). The model with memory was analysed in (Vosvrda, 
Vacha, 2002b). A process of a memory feeding is improved by the worst out algorithm (WOA). 

Let us consider an asset-pricing model with one risky asset and one risk-free asset. Let pt 
be the share price (ex dividend) of the risky asset at time t, and let {yt} be an i.i.d. stochastic 
dividend process of the risky asset. The risk free asset is perfectly elastically supplied and pays 
a fixed rate of return r. The gross return r

g is equal 1+ r. The risky asset pays a random 
dividend. The dynamics of wealth can then be written as 

( )1 1 1
g g

r W r p z
t t t t t t

= ⋅ + + − ⋅ ⋅
+ + +

W p y  (1.1) 

where zt denotes the number of shares of the asset purchased at time t, and a bold face type 
denotes random variables at date t. Let Et and Vt denote the conditional expectation and 
conditional variance operators, based on the publicly available information set consisting of past 

prices and dividends, i.e., on the information set 
t

ℑ  = {pt, pt-1,…; yt, yt-1 ,…}. Let Eh,t, Vh,t 
deno-te forecasts of investor of type h about a conditional expectation and conditional variance. 
Inves-tors are supposed to be a myopic mean-variance maximizer so that the demand zh,t. for 
risky asset is obtained by solving the following criterion 
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where a risk aversion, a, is here assumed to be the same for all traders. Thus the demand zh,t. of 
type h for risky asset has the following form  
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(1.3) 

assuming that the conditional variance of excess returns is a constant for all investor types  

2 2
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g
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(1.4) 

Let z
s
 be a supply of outside risky shares per investor. Let nh,t be a fraction of type h at date t. 

The equilibrium of demand and supply is  
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where H is the number of different investor types. For the special case of zero supply, i.e., z
s 

= 0, 
the market equilibrium is as follows 
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If there is only one investor type, the market equilibrium yields the following pricing equation 
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It is well known that, using the arbitrage (1.6) repeatedly and assuming that the transversality 
condition  
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holds, the fundamental price of the risky asset is uniquely obtained by  

1

*

k

E
t t k

p
t k

g
r

∞

=

 
+ =

 
 
 

∑
y

 
 

(1.8) 

Thus the fundamental price pt
* depends on the stochastic dividend process {yt}. From the equ-

ation (1.6) we obtain the following price equation 
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0 0

t
g

p p r p p
t

t

  = + ⋅ −   
   

 
 

(1.9) 

For our purpose, it is better to work with the deviation xt from the benchmark fundamental price 

pt
*, i.e., *

x p p
t t t

= − . 

2. Evolutionary Dynamics of Investors  

Let us admit the following assumptions: 
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A3) All forecasts 
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Each forecast f
h
L represents a model of the market for which type h believes that prices deviate 

from the fundamental price. Let us concentrate on the evolutionary dynamics of the fractions nh,t 
of different h-investor types, i.e. 

( )
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where nh,t-1 denotes the fraction of investor type h at the beginning of period t, before than 
the equilibrium price xt has been observed and L is a random number of lags. Now the 
realized excess return over period t to the period t+1 is computed by 
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From the equations (1.3), and (2.4), we get the following expressions 

* * 0
1 1

g
E r p

t t t t
 + − ⋅ =
 + + 
p y  , * *

1 1
g

r p
t t t

+ − ⋅
+ +

p y , and 

1
g

r x
t t

− ⋅
+

x  

 
 

(2.8) 
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The decomposition of the equation (2.9) as separating the ‘explanation’ part of realized 

excess returns Zt+1 into the contribution * *
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So the π-performance is given by the realized performance for the h-investor. Let the updated 
fractions nh,t be given by the discrete choice probability (Gibb’s distribution) 
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The parameter β is the intensity of choice measuring the amount of uncertainty in 
choice. We can say the more uncertainty the lesser the parameter β. The parameter β is a mea-
sure of investor’s rationality. If the intensity of choice is infinite (β = +∞), the entire mass of 
investors uses the strategy that has the highest performance. If the intensity of choice is zero, 
the mass of investors distributes itself evenly across the set of available strategies. All forecasts 
will have the following form  

( )1t t t l
f g x x b

− −
= ⋅ + + +L

�  (2.14) 

where the g denotes the trend of investor, and the b denotes the bias of investor. If b = 0, 
the investor is called a pure trend chaser if g > 0 and a contrarian if g < 0. If g = 0, investor is 
called purely biased. Investor is upward (downward) biased if b > 0 (b < 0). In the special case 
g = b = 0, the investor is called fundamentalist, i.e., the investor believes that price return to 
their fundamental value. Fundamentalists strategy is based on all past prices and dividends in 
their information set, but they do not know the fractions nh,t of the other belief types.  

3. Monte Carlo Simulations of the Financial Market Agents 

The main idea of this paper is a comparison of behaviour of two cases, which differs in 
the distribution function F(l) which controls memory length l of the agents on the financial 
market. The first case is with the normal memory length distribution, FN(l)~N(20,25), the second 
case has the uniform memory length distribution FU(l)~U(1,40), see Figure 1. Parameters g 
(trend) and b (bias) have the same stochastic structure for the two cases i.e., N(0,0.16) and 
N(0,0.09), respectively (see the equation (2.14)). These distributions are used for forming the ini-
tial set of agents’ beliefs (trading strategies) and the same distribution functions are also used for 
adding a new agent, using the WOA. Here, a memory length is considered as a stochastic vector. 
The length of the memory is a number of stochastic elements in the stochastic vector. The per-
formance measure is computed as a moving average with length l, where l represents memory 
length of a particular agent on the market. The moving average has equal weights, so there is no 
memory fading present in the memory process. 

 
FIGURE 1  Distribution Functions of Memory Length, left: uniform, right: normal 
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Simulations show difference between these two types of agents’ memory distribution 
functions. Simulations are performed with A agents (beliefs), where A = 40, with the intensity of 
choice beta = 120. The WOA algorithm is set to enter the process after every 50 iterations. 
Number of observations is 10 600 for both cases.  

3.1 Hurst Exponent 

For estimating and analyzing of correlation structures on capital markets, a nonpa-
rametric method is used. H. E. Hurst discovered very robust nonparametric methodology which 
is called rescaled range or R/S analysis which is used for estimating the Hurst exponent Peters 
(1994). The R/S analysis was used for distinguishing random and non-random systems, the per-
sistence of trends, and duration of cycles. This method is very convenient for distinguishing ran-
dom time series from fractal time series as well. Starting point for the Hurst’s coefficient was 
the Brownian motion as a primary model for random walk processes. 

If a system of random variables is an i.i.d, then H = 0.5, i.e., Geometrical Brownian 
Motion (GBM) that is shown as a dashed line in figures with R/S analysis. The values of Hurst 
exponent belonging to 0 < H< 0.5 signifies antipersistent system of variables covering less 
space than random ones. Such a system must reverse itself more frequently than a random pro-
cess, we can equate this behavior to a mean-reverting process. Values 0.5<H<1 show persistent 
process that is characterized by long memory effects. This long memory occurs regardless of 
time scale, i.e., there is no characteristic time scale which is the key characteristic of fractal time 
series (Peters, 1994). 

 
FIGURE 2  Normal Distributed of the Memory Length, H = 0.519 (10 600 observations) 
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Figure 21 shows results of the R/S analysis for the first case, where the memory length 

distribution function is normal FN(l) (the normal case). The whole time series (10 600 obser-
vations) was analyzed. According to the estimate of the Hurst exponent the time series of asset 
price returns is slightly persistent (H = 0.519). This is in contrast to the second case where 
the memory length distribution function is uniform FU(l) (the uniform case), see in Figure 3, 
where the time series of asset price returns is antipersistent (H = 0.412). The results of these 
simulations indicate that there is a possibility of a prediction in the normal case – see (Peters, 
1994). 

The values of the Hurst exponent are not the same during all simulation. The WOA 
changes these values significantly and we can observe distinct trend of the Hurst exponent in 
the two cases. We estimated the Hurst exponent in a set of the first and the last 3600 obser-

                                                           
1 The solid line represents the output of the model (average of many simulations), the dashed line 
represents the GBM case i.e., an i.i.d. process.  
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vations, see Figures 4, and 5. In the normal case, the time series of asset price return becomes 
more persistent as more changes with the WOA are done i.e., from H = 0.423 to H = 0.589, 
Figure 4, conversely, in the uniform case the time series becomes more antipersistent i.e., from 
H = 0.369 to H = 0.286, see Figure 5. Descriptive statistics of the examined asset price returns 
time series are in Table 1, there is noticeable difference is in the values of kurtosis. The normal 
case has remarkably higher kurtosis than the uniform case, and in fact, is closer to the real 
financial markets. 

 
FIGURE 3  Uniform Distributed of the MemoryLength, H = 0.412 (10 600 observations) 
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FIGURE 4  Normal Memory Length Distribution, left: the first 3600 obs., H = 0.423, right: 
the last 3600 obs. (7000–10600), H = 0.589 
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3.2 Impact of the WOA on Trading Strategies on the Financial Market 

 For a better understanding of the evolution dynamics with the WOA we compared 
market structure i.e., what types of agents (beliefs) are presented on the market, at the beginning 
and at the end of the experiment, Figures 6–9. We were interested in how the set of strategies on 
market is changed after several replacements under the WOA i.e., what types of strategies 
survive on the market. We can see the contrast between the examined cases with different me-
mory distribution function, which is the only distinction between these cases. 
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FIGURE 5  Uniform Memory Length Distribution, left: the first 3600 obs., H = 0.369,  
right: the last 3600 obs. (7000–10 600), H = 0.286 
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TABLE 1  Descriptive Statistics and Hurst Exponent for the Normal and the Uniform Case 
 

Case Hurst e. Mean Variance s.d. Kurtosis Skewness 

Normal (0–10 600) 0.519 0.0000 0.029 0.17 5.508 -0.149 

Normal (0–3600) 0.423 0.0005 0.033 0.18 3.189 -0.129 

Normal (7000–10 600) 0.589 -0.0005 0.026 0.16 2.448 -0.236 

Uniform (0–10 600) 0.412 -0.0095 0.102 0.32 0.584 0.092 

Uniform (0–3600) 0.369 -0.0130 0.076 0.28 0.144 0.032 

Uniform (7000–10 600) 0.286 0.0020 0.134 0.37 -0.591 0.011 

 
FIGURE 6  Initial and Final Distribution of Agents’ Strategies for the Normal Case,  

left: trend g, right: bias b (10 600 observations) 
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3.2.1 Normal Case 

For the normal case, there is an evident variance decrease (very strong in some expe-
riments, see Figure 13). This noticeable fact is caused by market learning that means presence of 
the WOA that eliminates unsuccessful trading strategies. The impact of the market learning is 
depicted in histograms (Figures 6, 7), where the shift of trading strategies preferences is clear. A so-
lid bar describes the initial empirical distribution of agents’ strategies (trend g, bias b, memo-
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ry l); the empty bar is the final empirical distribution after all changes under the WOA are done. 
Figure 6 shows shift to the contrarians’ strategies (lower mean for the end g, Table 2) and a cen-
tral tendency to the zero bias (higher kurtosis for the end b, Table 2). The mean of the memory 
for the normal case is lower in the final set of trading strategies, which signalize the problem of 
the traders with longer trading horizons to react to price fluctuations on the market.  
 
FIGURE 7  Initial and Final Distribution of Agents’ Memory for the Normal Case  

(10 600 observations) 
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TABLE 2  Descriptive Statistics of the Initial and Final Trading Strategies, the Normal Case 
 

Normal case Mean Variance s.d. Kurtosis Skewness 

Begin g 0.0120  0.153 0.40 -0.1890 0.093 

End g  -0.2620  0.141 0.36 -0.3650 0.200 

Begin b   0.0200  0.092 0.30 -0.1310 0.089 

End b   0.0058  0.063 0.25 1.6860 0.083 

Begin m 19.7880 24.624 4.96 -0.0190 0.073 

End m 18.9830 22.460 4.74 0.0539 -0.207 

 

FIGURE 8  Initial and Final Distribution of Agents’ Strategies for the Uniform Case 
left: trend g, right: bias b (10 600 observations) 
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3.2.2 Uniform Case 

The uniform case reveals a strong shift of a trend preference mean to contrarians, more 
than one σ, in Figure 8, left, and Table 3, that is stronger then in the normal case. Parameter bias b 
has practically the same descriptive statistics during the simulation. Alike in the normal case, 
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a part of traders with longer memory is eliminated by the WOA, this situation is depicted in 
Figure 9, where more than a double increase in the first column of the histogram occurs, i.e., 
the evolutionary dynamics on the financial market is more favorable to traders with shorter me-
mory length. Due to the increase of trading strategies with very short memory length, we can 
observe increasing values of asset price returns variance in time, see Table 1, and Figure 11.  
 
FIGURE 9  Initial and Final Distribution of Agents’ Memory for the Uniform Case  

(10 600 observations) 
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TABLE 3  Descriptive Statistics of the Initial and Final Trading Strategies, the Uniform Case 
 

Uniform case Mean Variance s.d. Kurtosis Skewness 

Begin g -0,0160 0.164 0.400 -0.0084 -0.101 

End g -0.4520 0.129 0.360 0.9650 0.732 

Begin b -0.0048 0.099 0.314 -0.1810 -0.074 

End b 0.0150 0.128 0.357 -0.4720 -0.176 

Begin m 19.483 128.62 11.340 -1.1930 0.134 

End m 18.213 164.351 12.810 -1.4680 0.131 

3.3 Analysis of Variance 

This subsection deals with the evolution of an average of variances of all fifteen expe-
riments of the two cases we are discussing above, i.e., the cases with the normal and the uniform 
distribution function of the memory length. The mean of memory length is almost equal in these 
two cases to eliminate the occurrence of difference in the variance values due to substantial 
disparity of the memory lengths. In (Vavra, Vosvrda, 2005) is proved that the higher the mean 
of the memory length the lower the variance of the asset price returns.  

Behaviour of the variance is considerably different in the two cases. In general, the nor-
mal case has lower variance in almost all experiments, this situations is depicted in histogram of 
all experiments’ variances, Figure 10. Figure 11 shows a trend of variance. For the variance de-
velopment in time, we use moving a window of length 100. In the uniform case there is a linear 
trend of the variance. Conversely, in the normal case, there is a slow variance decrease. We can 
say that the WOA causes a risk stabilizing role in the normal case. In the uniform case, the WOA 
causes the increase of the market risk level. 

Analyzing the variance of the asset price returns in the normal case more closely we 
have found two groups of realizations with different behaviour of variance in time, see Figure 12. 
We can see that the variance evolution of these groups is dissimilar. The group with the lowest 
variance (four experiments), in Figure 12 left panel, has a quickly decreasing variance, that after 
4000 iterations falls to very small levels close to zero, on the other hand the group with 
the highest variance, right panel, has a constant zero trend after 4000 iterations. This result 
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indicates that the initial mix of trading strategies in the case with the uniform memory length 
distribution function, Figure 13, does not play such a big role as in the case with the normal 
memory length.  
 

FIGURE 10  Histogram of Averages of Total Variances for the Cases with the Uniform 
and the Normal Memory Distribution Function 
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FIGURE 11  Average of Variances (with Linear Fit) for the Cases with the Uniform 

and the Normal Memory Distribution Function 

Variances (window 100), linear fit

Normal = 0,0347-1,0416E-6*x  Uniform = 0,0599+7,9347E-6*x
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4. Conclusion 

The important outcome of the simulations is the possibility of prediction in the case with 
the normally distributed memory length. An interesting result concerning risk behavior is the fact 
that the WOA plays a stabilizing role in the normal case in a sense of decreasing variance in 
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time. Conversely, the uniform case affects the financial market risk level negatively, i.e., rising 
variance in time. Another interesting result is the fact that in the uniform case there is a strong 
shift of a trend preference mean to contrarians, stronger than in the normal case. It means that 
with the WOA contarians are more effective agents than trend chasers agents. 
 

FIGURE 12  Variance for the Case with the Normal Memory Distribution Function 
left: 4 experiments with the lowest variance,  
right: 4 experiments with the highest variance 
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FIGURE 13  Variance for the Case with the Uniform Memory Distribution Function  
left: 4 experiments with the lowest variance,  
right: 4 experiments with the highest variance 
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