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Aggregating and Updating Information

Hannu Salonen∗

Abstract We study information aggregation problems where to a set of measures a single mea-
sure of the same dimension is assigned. The collection of measures could represent the beliefs
of agents about the state of the world, and the aggregate would then represent the beliefs of the
population. Individual measures could also represent the connectedness of agents in a social
network, and the aggregate would reflect the importance of each individual. We characterize
the aggregation rule that resembles the Nash welfare function. In the special case of probability
aggregation problems, this rule is the only one that satisfies Bayesian updating and some well-
known axioms discussed in the literature.
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1. Introduction

We study information aggregation problems where to a set of measures a single mea-
sure of the same dimension is assigned. The collection of measures could represent the
beliefs of agents about the state of the world, and the aggregate would then represent
the beliefs of the population. Individual measures could also represent the connect-
edness of agents in a social network, and the aggregate would reflect the importance
of each individual. We characterize axiomatically the aggregation rule (the Nash rule)
that resembles the Nash welfare function (Kaneko 1979). In the context of probability
aggregation the rule is sometimes called a logarithmic opinion pool (see Clemen and
Winkler 1999).

This is done both in the case the measures are probability distributions and in the
case of non-normalized measures. In the special case of probability aggregation prob-
lems, the Nash rule rule is the only one that satisfies Bayesian updating on top of some
standard axioms. Genest (1984) has obtained this result but he assumes that the state
space is infinite whereas we use finite state spaces. He also assumes a rather restrictive
functional form, and because of that he essentially needs only one axiom in his charac-
terization. Barrett and Pattanaik (1987) study the assumptions behind this functional
form and are able to characterize this rule when the state space is finite (we discuss
these papers at the end of Section 4). Finally, while probability measures seem natu-
ral in belief aggregation problems, non-normalized measures could be better suited in
some network applications.
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Crès et. al (2011) and Gilboa et. al (2004) are recent papers where belief aggrega-
tion or belief and preference aggregation problems are studied. In Crès et. al (2011)
there is a decision maker and a number of experts who all have the same utility function
but different set of prior beliefs (probability measures) over the states. The problem is
how to determine the beliefs for the decision maker in a reasonable way. Gilboa et. al
(2004) study utilitarian aggregation of preferences and beliefs in the social choice con-
text: when are society’s welfare function and beliefs representable as weighted avera-
ges of those of individual agents.

The same machinery that for decades has been used to analyze social choice prob-
lems can be applied to all kinds of belief or opinion aggregation problems. Recently
these tools have been applied to the analysis and construction of citation indices and
internet search engines (see Palacios-Huerta and Volij 2004; Slutski and Volij 2006).
For recent papers dealing with judgement aggregation from the logical point of view,
see List and Polak (2010) or Nehring and Puppe (2010).

The paper is organized in the following way. In Section 2 the notation and aggre-
gation rules are introduced. The axioms are introduced in Section 3. The main results
are given in Section 4. Section 5 contains conclusions.

2. Preliminaries

Let S be a nonempty finite set. A measure µ on S satisfies (i) µ(E)≥ 0, for each E ⊂ S;
(ii) µ( /0) = 0; and (iii) µ(E ∪E ′) = µ(E)+µ(E ′) for all disjoint subsets E,E ′ ⊂ S. In
this paper we assume that all subsets are measurable. We may denote the measure of
singletons {s} by µ(s) instead of µ({s}). So for example µ(E) = ∑s∈E µ(s). Given a
measure µ on S and E ⊂ S, the restriction of µ to E is a measure µ|E on S defined by
µ|E(A) = µ(A∩E) for every A ⊂ S.

Given a finite set N with n > 0 elements, and measures mi, i ∈ N, an ordered n-
tuple m = (mi)i∈N is called a profile of measures. Given a profile m of measures, the
inequality m(E)<m(E ′) means mi(E)<mi(E ′) for all i∈N; inequality mi <m′

i means
mi(E)< m′

i(E) for all nonempty E ⊂ S; inequality m < m′ means mi < m′
i for all i ∈ N.

Let supp(µ) = {s ∈ S |µ(s) > 0} be the support of a measure µ on S. A measure
with an empty support is called a null measure and we denote it by µ0. Given a
profile m = (mi)i∈N of measures on S, let supp(m) = {s ∈ S |mi(s) > 0,∀i ∈ N} be
the intersection of the supports of the measures mi. If there is any risk of confusion
we will state explicitly whether supp(m) means the support of a single measure or a
profile of measures.

An aggregation problem is a triple P = (N,S,m), where N is a nonempty finite
subset of natural numbers N= {0,1, . . .}, S is a nonempty finite set, and m = (mi)i∈N is
a profile of measures mi on S. We denote the set of all aggregation problems (or simply
problems) by P . We may study the subclass of problems with a common support
(supp(mi) = supp(m j), for all i, j ∈ N) denoted by Pcs, and a special case of this, the
problems with full support (supp(mi) = S, for all i ∈ N) denoted by P+. If we want to
study subclasses of problems with a given set of agents N or states S, we may denote
these classes by PN , PN,S, P+,N e.t.c.
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An interpretation of the model is that N is the set of agents, S is the set of states of
the nature, and mi is the measure for agent i representing his beliefs about what is the
true state s. Another possible interpretation is that S is a set of goods, and that each mi
is an additively separable utility function over S. Then mi(E) would be the utility from
a bundle E ⊂ S of goods.

A third interpretation is that N is the set of authors, S is the set of articles in aca-
demic journals, and mi(s) denotes the number of times author i has cited article s. More
generally, since tastes and beliefs are opinions and citations reflect opinions as well,
we may also say that the measures mi represent the opinions of the agents.

An aggregation rule is a function f sucht that f (P) is a measure on S for each
aggregation problem P = (N,S,m) ∈ P . Depending on the interpretation of the aggre-
gation problem P, f (P) may be interpreted as an aggregate belief of the society, or as
a social preference, or as a “general opinion”.

We say that a problem P = (N,S,m) is a probability aggregation problem, if each
mi is a probability measure and f (P) should also be a probability measure. Note that
this subclass of problems is different than the ones defined above, since the definition
also restricts the class of feasible rules.

2.1 Some well-known aggregation rules

The Average rule f A is the best known rule. It is defined by f A(P)(s) = 1
n ∑i∈N mi(s)

for every s ∈ S, for each problem P = (N,S,m). This is sometimes called the linear
opinion pool (see Clemen and Winkler 1999).

The Median rule f M is defined as follows for every problem P = (N,S,m) (see e.g.
Balinski and Laraki 2007; Barthelemy and Monjardet 1981). Given s ∈ S, let f M(P)(s)
be the median of the components of the vector m(s). In case where the successive
elimination of greatest and least values of the coordinates of the vector m(s) leaves us
with two components mi(s) and m j(s), we define the median to be the average of these
values. For example, if m(s) = (1,1,3), then the median is 1, but if m(s) = (1,1,3,3),
then the median is 2.

The Borda rule f B is also quite well-known (see e.g. Nurmi and Salonen 2008;
Saari 2006; Young 1974). Let bi(P)(s) = |{s′ ∈ S |mi(s′) ≤ mi(s)}| for all s ∈ S, and
let f B(P)(s) = 1

n ∑i∈N bi(P)(s), for all problems P = (N,S,m) (here |X | means the
cardinality of the set X). Note that if for each i the measures mi(s) are different for
different states s, we get the standard form of the Borda rule. The Borda rule is often
defined as the sum ∑i∈N bi(P)(s). For all practical purposes the two versions are the
same.

The Nash rule f G is based on the Nash welfare function (Kaneko 1979), and the
idea can be applied in the present context as well (this rule is sometimes called the
logarithmic opinion pool, see Clemen and Winkler (1999). It is defined by f G(P)(s) =
n


∏i∈N mi(s) for each s ∈ S, for each problem P = (N,S,m). The superscript G refers
to the fact that f G(P)(s) is the geometric average of the individual mi(s)-values.

The Norm rules f EN , f SN are based on the Euclidean norm and sup-norm, respec-
tively. The rule f EN is defined by f EN(P)(s) = n−1/2


m1(s)2 + · · ·+mn(s)2 for each

s ∈ S, for each problem P = (N,S,m). Define f SN by f SN(P)(s) = sup{|m1(s)|, . . . ,

Czech Economic Review, vol. 8, no. 2 57



H. Salonen

|mn(s)|} for each s ∈ S, for each problem P = (N,S,m) (here |x| means the absolute
value of number x). Note that the norm rule corresponding to the city block norm
|m1(s)|+ · · ·+ |mn(s)| is the Average rule f A.

The rules defined above can be defined in such a way that they are applicable in
probability aggregation problems as well. There are many ways to do it. Suppose the
subclass of problems is such that f (P)(S) > 0, and each mi is a probability measure,
for every problem P = (N,S,m) in this subclass. Then a probability aggregation rule
f× can be defined by f×(P)(s) = f (P)(s)/ f (P)(S) for every s ∈ S. We call f× the
multiplicative normalization of f .

3. Properties of aggregation rules

Now we present some properties or axioms that aggregation rules could satisfy. For a
more comprehensive treatment of different aggregation procedures and their properties,
see e.g. Nurmi (2002).

We do not specify in each case the subclass of problems where the axiom in ques-
tion should be applicable. Instead, we specify in our theorems the subclass where the
rules are defined, and axioms are then restricted to this subclass as well. This way we
may use the axioms in a more flexible manner. For example, if we analyze the class
of problems with full support, then Regularity (defined below) has no bite. Notable
exception to this practice is the axiom Bayesian updating that is designed specifically
for probability aggregation problems.

Given agent sets N and M with equally many members, let π : N −→ M be any
bijection, and given an n-tuple m of measures, let πm be an n-tuple of measures such
that πmπ(i) = mi. In other words, the agent π(i) has the same measure in profile πm as
person i has in profile m. Given an aggregation problem P = (N,S,m) and a bijection
π : N −→ M, define another aggregation problem Q = (M,S,πm), which is otherwise
the same as P except that agent π(i)∈ M has been given the measure mi of agent i ∈ N:
πmπ(i) = mi.

Axiom 1 (Anonymity, AN). For every bijection π : N −→ M and aggregation problems
P = (N,S,m) and Q = (M,S,πm), it holds that f (Q) = f (P).

Let S and T be two finite sets with the same number of elements. Given an aggre-
gation problem P = (N,S,m) and a bijection π : S −→ T , define another aggregation
problem Q = (N,T,mπ), which is otherwise the same as P except that elements s ∈ S
are replaced by elements π(s) ∈ T , and mπ(π(s)) = m(s), for all s ∈ S.

Axiom 2 (Neutrality, NE). For every bijection π : S −→ T and aggregation problems
P = (N,S,m) and Q = (N,T,mπ), it holds that f (P)(s) = f (Q)(π(s)) for every s ∈ S.

Anonymity says that the labels of the agents do not matter, while Neutrality says that
labels of the states do not matter. All the rules defined in Section 2.1 satisfy Neutrality
and Anonymity. These rules satisfy also the following axiom called Unanimity.

Axiom 3 (Unanimity, UN). If m1 = · · · = mn = µ in an aggregation problem P =
(N,S,m), then f (P) = µ .
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The previous three axioms are standard in the literature.

Axiom 4 (Common scale covariance, CSC). If P = (N,S, p) and Q = (N,S,q) are two
problems such that q = ap for some a > 0, then f (Q) = a f (P).

Common scale covariance says that if we multiply the opinions of all agents by the
same constant then the aggregate opinion will be multiplied by the same constant. This
property is sometimes called Homogeneity (of degree one). All rules in Section 2.1
except the Borda rule satisfy this axiom.

Axiom 5 (Individual scale covariance, ISC). Suppose problems P = (N,S, p) and Q =
(N,S,q) are such that for some i ∈ N, qi = api for some a > 0, and q j = p j for all
j 6= i, j ∈ N. Then f (Q) = αP

i (a) f (P) for some strictly increasing and continuous
function αP

i : R++ −→ R++.

Individual scale covariance says that if we multiply agent i’s beliefs by a posi-
tive constant, then the aggregated beliefs are also multiplied by some positive con-
stant. This axiom is needed in applications where only the ratios mi(s)/mi(s′) and
f (P)(s)/ f (P)(s′) of individual and aggregate opinions matter. Because if ISC is sa-
tisfied, scaling the measure mi up or down has no effect on these ratios. CSC does
not guarantee this unless all measures mi are multiplied by the same constant. On the
other hand, if all measures are multiplied by the same constant a > 0, then applying
ISC iteratively we can see that the aggregated beliefs are multiplied by some constant
b, but not necessarily by a.

All rules in Section 2.1 except the Borda rule satisfy CSC but only the Nash rule
f G satisfies both ISC and CSC. Axioms CSC and ISC are of course not applicable in
probability aggregation problems.

The next axiom is a version of the well-known property the appears already in
Arrow’s seminal work (Arrow 1963).

Axiom 6 (Independence of irrelevant alternatives, IIA). Let P = (N,S, p) and Q =
(N,S,q) be two aggregation problems such that p(s) = q(s) and p(s′) = q(s′) for some
s,s′ ∈ S. Then f (P)(s)< f (P)(s′) if and only if f (Q)(s)< f (Q)(s′).

All the rules defined in Section 2.1 satisfy this axiom except the Borda rule. The
following axiom is closely related to IIA.

Axiom 7 (Updating, UP). If P = (N,S,m) and Q = (N,E,m|E) are such that E ⊂ S
and E 6= /0, then f (Q) = f (P)|E .

We will show in Section 4 that every rule that satisfies UP satisfies also IIA. The
only rule in Section 2.1 that does not satisfy UP is the Borda rule. The following axiom
is the well-known Bayesian updating property. It’s domain is the class of probability
aggregation problems.

Axiom 8 (Bayesian updating, BUP). Let P = (N,S, p) and Q = (N,E,q) be two pro-
bability aggregation problems such that E ⊂ S, pi(E)> 0 and qi is derived from pi by
the Bayes rule for all i ∈ N. Then the probability measure f (Q) is derived from the
probability measure f (P) by the Bayes rule.
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Bayesian updating seems so natural that one may wonder whether it has any bite
at all. However, even the best-known aggregation rule, the Average rule, fails to sa-
tisfy this axiom. This axiom is sometimes called external Bayesianism (see Genest
1984; Clemen and Winkler 1999). The following axiom makes sense in all kinds of
aggregation problems.

Axiom 9 (Expert proofness, EP). Let P = (N,S, p) and Q = (N \ {i},S,q) be two
aggregation problems such that i ∈ N, p j = q j, for all j ∈ N \{i}, and pi = f (Q). Then
f (P) = f (Q).

If agent i adopts the aggregated opinions of the other agents j ∈ N \ {i}, then
the aggregated opinions of the enlarged population N are the same as the aggregated
opinions of N \{i}. One interpretation is that the public already has a quite good idea
of what the opinions in the society are, and they may have adjusted a little bit their
own views as a response. Then if an expert comes and makes the society’s opinions
common knowledge, the public has no reason to adjust their opinions any more. We
will show in Section 4 that all the rules defined in Section 2.1 satisfy EP.

Related properties such as Consistency and Positive involvement have been dis-
cussed in the context of social choice functions (see Young 1974, and Saari 1995).
Suppose N and M are disjoint sets of agents who have beliefs over the same state space
S. In our context Consistency could be formulated as follows. If the aggregated beliefs
of both groups is that state s̄ has the greatest measure among all states s ∈ S, then the
group N ∪M would also have this same aggregated belief about s̄. Aggregation rule
would satisfy Positive involvement, if this conclusion would hold in case all agents i in
group M would have identical beliefs mi, and mi(s̄)≥ mi(s) for all s ∈ S.

Expert proofness says that aggregated beliefs do not change if a new agent enters
with beliefs that are equal to the aggregated beliefs of the rest of the society. Expert
proofness is silent about what would happen if the new agent had the same beliefs as at
the rest of the society about states with the highest measure only. Positive involvement
would imply that the aggregated beliefs about these states would not change. Consis-
tency would also imply this, provided that aggregated beliefs of single agent societies
coincide with the beliefs of that agent (this property is called Faithfulness in Young
(1974)).

The last axiom discussed here is a rather weak version of unanimity: if all agents
agree that state s has zero measure, then the aggregated beliefs must also put zero
measure on s.

Axiom 10 (Regularity, REG). Given P = (N,S,m), it holds that f (P)(s) = 0 for a
given s ∈ S, if mi(s) = 0 for all i ∈ N.

Regularity is satisfied in the class P by all the other rules defined in Section 2.1.
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4. Results

All the rules defined in Section 2.1 are Expert proof.

Lemma 1. The Average rule, the Borda rule, the Median rule, the Nash rule, and the
Norm rules f EN and f SN satisfy EP.

Proof. See the Appendix.

We show next that the axiom UP implies IIA.

Lemma 2. If a rule f satisfies UP, then it satisfies IIA.

Proof. Suppose f satisfies UP. Let P = (N,S, p) and Q = (N,S,q) be two aggregation
problems as in the statement of IIA: p(s) = q(s) and p(s′) = q(s′) for two members
s,s′ ∈ S. Let E = {s,s′}, and P′ = (N,E, p|E), and Q′ = (N,E,q|E). Then by UP,
f (P′) = f (P)|E and f (Q′) = f (Q)|E . But P′ = Q′ because p|E = q|E , and therefore f
satisfies IIA. �

The next lemma is needed in the proofs of the main results.

Lemma 3. Suppose f satisfies NE, ISC, and UP. Then the function αi in the axiom
ISC does not depend on P.

Proof. Suppose problems P = (N,S, p) and Q = (N,S,q) are such that for some
i ∈ N, qi = api for some a > 0, and q j = p j for all j 6= i, j ∈ N. Given s ∈ S, define
Ps =(N,{s}, p|{s}) and Qs =(N,{s},q|{s}). By UP, f (P)(s)= f (Ps)(s) and f (Q)(s)=
f (Qs)(s) = αP

i f (Ps)(s).
Let P′ = (N,X , p′) and Q′ = (N,X ,q′) be such that (i) for some x ∈ X , p′(x) =

p(s), (ii) q′i = ap′i, and q j = p j for all j 6= i, j ∈ N. Define P′x = (N,{x}, p′|{x}) and
Q′s = (N,{x},q′|{x}). Then by NE, f (P′x) = f (Ps) and f (Q′x) = f (Qs) = αP

i f (Ps). By
UP, f (P′)(x) = f (P′x)(x), and f (Q′)(x) = f (Q′x)(x) = αP

i f (P′)(x). By ISC, f (Q′) =

αP′
i f (P′). But then αP

i = αP′
i , and we are done. �

We give next an axiomatic characterization of the Nash rule on the class of full
support aggregation problems P+. First we characterize a one-parameter family of
rules.

Theorem 1. Let f be a rule satisfying AN, ISC, CSC, NE, and UP on the class of full
support problems P+,N with a given set N of agents. Then for some a > 0, f = a f G,
or f (P) is the null measure µ0 for all P ∈ P+,N .

Proof. See the Appendix.

Remark 1. If f (P) = µ0 for all P, then f = 0 · f G, so the theorem gives a characteriza-
tion of a one-parameter family F = {a f G | a ≥ 0} of rules.

Remark 2. Theorem 1 does not say whether or not the parameter a of the family F
depends on N.
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Remark 3. The axiomatization is tight in the sense that if we drop any of the axioms,
then there are many more rules that satisfy the remaining axioms. The only axiom for
which this is not obvious is UP. The following rule satisfies all the other axioms except
UP.

f (P) =


∏

i
mi(S)

1/n
1
n ∑

i


mi

mi(S)


If we add Unanimity to the list of axioms of Theorem 1, the only possible solution is

the Nash rule f G and the agent set N need not be the same in every problem. Moreover,
we can replace the full support assumption by the common support assumption.

Lemma 4. If a rule f satisfies UP and UN, then f satisfies REG.

Proof. Let P = (N,S,m) be such that mi(s) = 0 for all i ∈ N, for some s ∈ S. Then by
UP, f (P′)(s) = f (P)(s), where P′ = (N;{s},m|{s}). By UN, f (P′)(s) = 0. �

Lemma 4 implies that in common support problems P = (N,S,m), f (P)(s) = 0 for
all s /∈ supp(m).

Theorem 2. Let f be a rule satisfying AN, ISC, CSC, NE, UN and UP on the class of
common support problems Pcs, then f = f G.

Proof. If m1 = · · · = mn = µ in equation (1), then by UN we get that f (QN) = 1.
Since this holds independently of N, we are done. �

Remark 4. The Nash rule f G satisfies all the axioms mentioned in Theorem 2 in the
class P of all problems. At the moment I do not know if there are other rules satisfying
these axioms in the class P .

Here is our main result concerning probability aggregation problems. Let f G× be
the multiplicative normalization of the Nash rule f G.

Theorem 3. Suppose f is a rule that satisfies AN, ISC, CSC, NE, UN and UP on the
class of common support problems Pcs, and that its multiplicative normalization f×

satisfies BUP on the class of probability aggregation problems in Pcs. Then f = f G

and f× = f G×.

Proof. See the Appendix.

Genest (1984) assumes infinite state space S and that there is a function F : [0,∞)n

−→ [0,∞) such that f (P)(E) = F(m1(E), . . . ,Fn(E)) for each measurable E ⊂ S. This
kind of formalization hides behind it many assumptions. Barrett and Pattanaik (1987)
formalize some of these assumptions as axioms, and drop the assumption that S is
infinite. They assume monotonicity (also for conditional probabilities) which says that
p′i(s)≥ pi(s) for all i implies f (P′)(s)≥ f (P)(s), where P = (N,S, p),P′ = (N,S, p′).
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5. Conclusions

The main contributions of this paper are (i) to propose new axiomatic characteriza-
tions of the Nash rule, and (ii) to give a detailed analysis of the relationships between
different axioms and aggregation rules.

The axioms Anonymity, Neutrality, Common scale covariance, and Unanimity are
quite uncontroversial in the context of belief aggregation. In the class of common
support problems only the Nash rule satisfies these axioms together with Individual
scale covariance and Updating (Theorem 2).

Individual scale covariance says that if the beliefs of an agent are multiplied by a
positive constant, then the aggregated beliefs will also be multiplied by some positive
constant. In other words, as long as the ratios mi(s)/mi(s′) do not change, the ratios
f (P)(s)/ f (P)(s′) of aggregated beliefs do not change either. This property seems most
natural if the relevant information about beliefs is contained in the ratios mi(s)/mi(s′).

Updating requires that if the state space shrinks from S to E ⊂ S, and agents’ up-
dated beliefs are their original beliefs restricted to E, then the aggregated beliefs on E
are the original aggregated beliefs restricted to E.

By Theorem 3 the normalized Nash rule is the only rule that satisfies the axiom
Bayesian updating in addition to the axioms mentioned above. This axioms says
that if agents apply Bayesian updating when they get more accurate information, then
Bayesian updating is applied to the aggregated beliefs as well.

Bayesian updating is a very natural assumption in single person decision problems.
It is quite surprising how much bite it has when applied to aggregation problems. This
holds of course for many other versions and modifications of the “Independence of
irrelevant alternatives” axiom.
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Appendix

Proof of Lemma 1. Let P = (N,S, p) and Q = (N \ {i},S,q) be two problems as in
the axiom EP. It is straightforward to verify that the Average rule satisfies EP.

Take the Borda rule f B and consider the problems P′ = (N,S,b(P)) and Q′ =
(N,S,b(Q)), where bi(P) is the measure derived from agent i’s Borda scores bi(P)(s)
in the problem P=(N,S, p), and b j(Q) is derived from agent j’s Borda scores b j(Q)(s)
in the problem Q = (N \{i},S,q).

Since pi(s′) < pi(s) iff bi(P)(s′) < bi(P)(s), the problem P′ is obtained from P
by applying strictly increasing transformations to the measures pi. Similarly, Q′ is
obtained from Q by applying strictly increasing transformations to the measures q j.
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Since the Borda scores bi depend only on the ordinal ranking of states s, the individual
Borda scores satisfy bi(P′)(s) = bi(P)(s) and b j(Q′)(s) = b j(Q)(s).

Since pi(s) = f B(Q)(s) = 1
n−1 ∑ j∈M b j(Q)(s) and b j(P) = b j(Q) for every j ∈ M,

we have
1
n ∑

j∈N
b j(P)(s) =

1
n


∑
j∈M

b j(Q)(s)+
1

n−1 ∑
j∈M

b j(Q)(s)

,

which implies f B(P′)(s) = f B(Q′)(s). Since bi(P′)(s) = bi(P)(s) and b j(Q′)(s) =
b j(Q)(s), we have that f B(P)(s) = f B(Q)(s), so the Borda rule satisfies EP.

The Median rule has the property that for all s ∈ S, pi(s) = f M(Q)(s) and this is
the median of the vector q(s). But then pi(s) is the median of the coordinates of the
vector p(s) as well, and so f M satisfies EP.

Let P = (N,S, p) and Q = (N \{i},S,q) be as stated in EP, and define M = N \{i}.
Then for each s ∈ S,

f G(P)(s) =

∏
j∈M

p j(s)


∏
j∈M

p j(s)

1/(n−1)
1/n

= f G(Q)(s),

and therefore the Nash rule satisfies EP.
If we use the Norm rule f EN , we have

f EN(Q)(s) = (n−1)−1/2


∑
j 6=i

m j(s)2,

which implies

f EN(P)(s) = n−1/2


∑
j 6=i

m j(s)2 +(n−1)−1 ∑
j 6=i

m j(s)2,

but then f EN(P)(s) = f EN(Q)(s) as desired.
The proof for sup-norm rule f SN is easy and omitted. �

Proof of Theorem 1. Clearly the rule that assigns the null measure to every problems
satisfies these axioms. So suppose f is another rule satisfying the axioms AN, ISC,
CSC, NE and UP.

Let P = (N,S,m) ∈ P+,N be any problem and take any s ∈ S. By UP, f (Q) =
f (P)|{s} where Q = (N,{s},m|{s}). By the full support assumption, mi(s) > 0 for
every i ∈ N.

Let qi be the vector such that qi
i = 1 and qi

j = m j(s) for all j 6= i, and let Qi =

(N,{s},qi). Note that mi(s) = mi(s)qi
i. Then by ISC, f (Q) = αi(mi(s)) f (Qi), where

αi is the continuous strictly increasing function in the axiom ISC. By Lemma 3, αi
does not depend on P.

Let qi j be the vector such that qi j
i = qi j

j = 1 and qi j
k = mk(s) for all k 6= i, j, and let

Qi j = (N,{s},qi j). Then f (Q) = α j(m j(s))αi(mi(s)) f (Qi j) by ISC.
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Let P′ be a problem that is otherwise like P except in problem P′ player i has a
measure m′

i = m j and player j has the measure m′
j = mi. Derive Q′ from P′ in the same

ways as Q was derived from P above, and construct q′i j in the same fashion as qi j.
By AN, f (P) = f (P′) and f (Q) = f (Q′), and therefore we must have

α j(m j(s))αi(mi(s))=α j(mi(s))αi(m j(s)). Since mi(s) and m j(s) are arbitrary positive
numbers, and functions αi and α j are strictly increasing, we must have that αi = α j.
Since players i and j were arbitrarily chosen, α1 = · · ·= αn ≡ α .

Applying ISC recursively, we get that f (Q) = ∏i α(mi(s)) f (QN), where QN =
(N,{s},1) and 1 = (1, . . . ,1). In the special case m1(s) = · · · = mn(s) = a, we get
that f (Q) = α(a)n f (QN). But by CSC, we must have α(a)n = a, or equivalently
α(a) = n

√
a.

It follows that

f (P)(s) =


n


n

∏
i=1

mi(s)


f (QN). (1)

Now the value f (QN) must be the same for all s ∈ S by NE, so f (QN)(s) = a, for
some a > 0, for all s ∈ S. But the constant a must be the same for all problems P′ =
(N,S′,m′).

To see this, note that in the axiom ISC the functions αi of agents i ∈ N were defined
to be the same for all problems. In particular, αi did not depend on the profile of
measures m or the state space S. If we have some other problem P′ = (N,S′,m′),
then by UP and NE, we get again that equation (1) holds, when mi is replaced by
m′

i and QN = (N,{s},1) is replaced by Q′N = (N,{s′},1). But NE implies that these
can be viewed as the same problem and hence they must have the same solution, so
f (QN) = f (Q′N). So the values f (P) and f (P′) are different only if m and m′ are
different. �

Proof of Theorem 3. It follows from Theorem 2 that f = f G, so we just have to show
that its multiplicative normalization f G× satisfies BUP.

Take any probability aggregation problem P = (N,S, p) with a common support.
By Lemma 4 and UP, we may assume S = supp(p). For any s ∈ S we have pi(s)> 0,
and so f G(P)(s) =


∏i pi(s)

1/n
> 0 and f G(P)(A) = ∑s∈A


∏i pi(s)

1/n
> 0 for every

A ⊂ S. By the definition of the multiplicative normalization we have for any s ∈ S

f G×(P)(s) =
f G(P)(s)
f G(P)(S)

.

Now update f G×(P) on the nonempty subset E ⊂ S by using the Bayes rule:

f G×(P)(s | E) =
f G(P)(s)


f G(P)(S)

f G(P)(E)


f G(P)(S)
) =

f G(P)(s)
f G(P)(E)

(2)

Let Q = (N,E,q) be related to P as in the axiom BUP. So q is derived from p by
applying the Bayes rule: qi(s) = pi(s)/pi(E), for all i ∈ N, for all s ∈ E. Therefore
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f G(P) is computed by

f G(Q)(s) =


∏i pi(s)

1/n
∏i pi(E)

1/n , ∀s ∈ E.

The corresponding multiplicative normalization is computed by

f G×(Q)(s) =


∏i pi(s)

1/n


∏i pi(E)
1/n

∑s∈E


∏i pi(s)
1/n


∏i pi(E)
1/n

, ∀s ∈ E. (3)

But the right hand sides of equations 2 and 3 are the same. Therefore f G× satisfies
BUP. �
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