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Risk-Sensitive and Mean Variance Optimality
in Markov Decision Processes

Karel Sladký∗

Abstract In this paper we consider unichain Markov decision processes with finite state space
and compact actions spaces where the stream of rewards generated by the Markov processes is
evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called
risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive
at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean
reward optimality conditions and the variability can be evaluated by the mean variance of total
expected rewards. For the risk-sensitive case we establish necessary and sufficient optimality
conditions for maximal (or minimal) growth rate of expectation of the exponential utility func-
tion, along with mean value of the corresponding certainty equivalent, that take into account not
only the expected values of the total reward but also its higher moments.
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1. Introduction

The usual optimization criteria examined in the literature on stochastic dynamic pro-
gramming, such as a total discounted or mean (average) reward structures, may be quite
insufficient to characterize the problem from the point of a decision maker. To this end
it may be preferable if not necessary to select more sophisticated criteria that also re-
flect variability-risk features of the problem. The best known approaches stem from the
classical work of Markowitz (1952,1959) on mean variance selection rules, i.e. we op-
timize the weighted sum of the expected total (or average) reward and its variance.

On the other hand, risky decisions can be also eliminated when the generated ran-
dom reward is evaluated by an exponential utility function and we optimize the cor-
responding expectation. To be more precise, let us consider an exponential utility
function, say uγ(·), i.e. a separable utility function with constant risk sensitivity γ ∈R,
where the utility assigned to the (random) outcome ξ is given by

uγ(ξ ) :=


(sign γ)exp(γξ ), if γ 6= 0,

ξ for γ = 0 (the risk-neutral case).
(1)
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For what follows let uγ(ξ ) := exp(γξ ), hence uγ(ξ ) = (signγ)uγ(ξ ). Recall that if
γ > 0 (the risk seeking case) the decision maker prefers large values of ξ , if γ < 0 (the
risk averse case) the decision maker prefers small values of ξ to the large ones.

Considering the utility function uγ(ξ ) the corresponding certainty equivalent, say
Zγ(ξ ), is the value such that uγ(Zγ(ξ )) = E[uγ(ξ )] (the symbol E is reserved for ex-
pectation). Then we immediately get

Zγ(ξ ) =


γ−1 ln{Euγ(ξ )}, if γ 6= 0

E[ξ ] for γ = 0.
(2)

Recall that exponential utility functions are separable and hence suitable for sequential
decisions in stochastic dynamic systems evolving over time.

The study of controlled Markov reward processes with exponential utility func-
tions, called risk-sensitive optimality, was initiated in the seminal paper Howard and
Matheson (1972). Recently, there has been an intensive work on Markov reward chain
with risk sensitive optimality criteria (see e.g. Jaquette 1976; Hernández-Hernández
and Marcus 1999; Borkar and Meyn 2002; Cavazos-Cadena 2002, 2003; Cavazos-
Cadena and Fernández-Gaucherand 1999, 2000; Cavazos-Cadena and Montes de Oca
2003, 2005; Cavazos-Cadena and Hernández-Hernández 2002, 2004, 2005; Di Massi
and Stettner 1999, 2000, 2006, 2007; and Sladký 2008a, 2008b, 2012).

In the present paper we restrict attention on unichain models with finite state space.
At first we rederive optimality conditions for standard risk-neutral models with mean
variance optimality and specify difficulties arising with this optimality criterion. Then
we focus attention on the risk sensitivity and establish necessary and sufficient opti-
mality conditions if the underlying Markov chain is irreducible or at least unichain and
the risk sensitivity coefficient is sufficiently close to zero.

The paper is organized as follows. Section 2 contains notation and preliminaries,
optimality equations for mean reward in risk-neutral (unichain) Markov processes are
given in Section 3 and in Section 4 for the corresponding mean reward variance. Opti-
mality equations for the risk-sensitive unichain models can be found in Section 5 and
necessary and sufficient optimality conditions both for risk-sensitive and risk-neutral
cases are presented in Section 6. Conclusions are made in Section 7. Some more
technical proofs are presented in the Appendix.

2. Notation and Preliminaries

In this note, we consider Markov decision processes with finite state and compact
action spaces where the stream of rewards generated by the Markov processes is eval-
uated by an exponential utility function (so-called risk-sensitive model) with a given
risk sensitivity coefficient.

To this end, we consider at discrete time points Markov decision process X =
{Xn, n= 0,1, . . .} with finite state space I = {1,2, . . . ,N}, and compact set Ai = [0,Ki]
of possible decisions (actions) in state i ∈ I. Supposing that in state i ∈ I action a ∈Ai
is chosen, then state j is reached in the next transition with a given probability pi j(a)
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(depending continuously on a) and one-stage transition reward ri j will be accrued to
such transition.

A (Markovian) policy controlling the decision process is given by a sequence
of decisions at every time point. In particular, policy controlling the process, π =
( f 0, f 1, . . .), is identified by a sequence of decision vectors { f n, n = 0,1, . . .} where
f n ∈ F ≡ A1 × . . .×AN for every n = 0,1,2, . . ., and f n

i ∈ Ai is the decision (or ac-
tion) taken at the n-th transition if the chain X is in state i. Let πm = ( f m, f m+1, . . .),
hence π = ( f 0, f 1, . . . , f m−1,πm), in particular π = ( f 0,π1). The symbol Eπ

i denotes
the expectation if X0 = i and policy π = ( f n) is followed, in particular, Eπ

i (Xm = j) =
∑i j∈I pi,i1( f 0

i ) . . . pim−1, j( f m−1
m−1 ); P(Xm = j) is the probability that X is in state j at time

m.
Policy π which selects at all times the same decision rule, i.e. π ∼ ( f ), is called

stationary, hence X is a homogeneous Markov chain with transition probability matrix
P( f ) whose i j-th element equals pi j( fi); Eπ

i (Xm) = [Pm( f )]i j (symbol [A]i j denotes
the i j-th element of the matrix A) and ri( fi) := ∑ j∈I pi j( fi)ri j is the expected reward
obtained in state i. Similarly, r( f ) is an N-column vector of one-stage rewards whose
i-the elements equals ri( fi). The symbol I denotes an identity matrix and e is reserved
for a unit column vector.

Recall that P∗( f ) := limn→∞
1
n ∑

n−1
k= Pk( f ) (with elements p∗i j( f )) exists, and if

P( f ) is aperiodic then even P∗( f ) = limk→∞ Pk( f ) and the convergence is geometrical.
Moreover, if P( f ) is unichain, i.e. P( f ) contains a single class of recurrent states, then
p∗i j( f ) = p∗j( f ), i.e. limiting distribution is independent of the starting state.

We shall assume that the stream of transition rewards generated by the considered
Markov decision process is evaluated by an exponential utility function (1) either with
the risk aversion coefficient γ 6= 0 (the risk sensitive case) or with γ = 0 (the risk neutral
case). To this end, let

ξn(π) =
n−1

∑
k=0

rXk,Xk+1

be the (random) total reward received in the n next transitions of the considered Markov
chain X if policy π = ( f n) is followed.

Supposing that X0 = i, on taking expectation we have

U γ

i (π,n) := Eπ
i (u

γ(ξn)) = (signγ)Eπ
i eγ ∑

n−1
k=0 rXk ,Xk+1 if γ 6= 0, (3)

Vi(π,n) := Eπ
i (u

γ(ξn)) = Eπ
i (ξn(π)) = Eπ

i

n−1

∑
k=0

rXk,Xk+1 if γ = 0, (4)

Si(π,n) := Eπ
i (u

γ(ξn))
2 = Eπ

i (ξn(π))
2 = Eπ

i (
n−1

∑
k=0

rXk,Xk+1)
2 if γ = 0, (5)

hence if γ = 0

σi(π,n) := Eπ
i [ξn −Vi(π,n)]2 = Si(π,n)− [Vi(π,n)]2. (6)
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Observe that U γ

i (π,n) is the expected utility, Vi(π,n) and Si(π,n) is the first and
second moment of the random variable ξn(π) if the process starts in state i and σi(π,n)
is the corresponding variance.

If policy π ∼ ( f ) is stationary, the process X is time homogeneous and for m< n we
write ξn = ξm+ξn−m (along with X0 = i we tacitly assume that P(Xm = j), hence ξn−m
starts in state j). Then [ξn]

2 = [ξm]
2+[ξn−m]

2+2 ·ξm ·ξn−m and on taking expectations
for n > m we can conclude that

Eπ
i [ξn] = Eπ

i [ξm]+Eπ
i


∑
j∈I

P(Xm = j) ·Eπ
j [ξn−m]


. (7)

Eπ
i [ξn]

2 = Eπ
i [ξm]

2 +Eπ
i


∑
j∈I

P(Xm = j) ·Eπ
j [ξn−m]

2
+2 ·Eπ

i [ξm] ∑
j∈I

P(Xm = j) ·Eπ
j [ξn−m]. (8)

From (7) and (8) we directly conclude for m = 1

Eπ
i [ξn] = r(1)i ( fi)+ ∑

j∈I
pi j( fi) ·Eπ

j [ξn−1], (9)

Eπ
i [ξn]

2 = r(2)i ( fi)+ ∑
j∈I

pi j( fi) ·Eπ
j [ξn−1]

2 +2 · ∑
j∈I

pi j( fi) · ri j ·Eπ
j [ξn−1], (10)

where r(1)i ( fi) = ri( fi) = ∑ j∈I pi j( fi) ri j, r(2)i ( fi) = ∑ j∈I pi j( fi)[ ri j]
2.

By using the more appealing notation Vi( f ,n) = Eπ
i [ξn], (9), (10) take on the forms:

Vi( f ,n+1) = r(1)i ( fi)+ ∑
j∈I

pi j( fi) ·Vj( f ,n), (11)

Si( f ,n+1) = r(2)i ( fi)+2 ∑
j∈I

pi j( fi) · ri j ·Vj( f ,n)+ ∑
j∈I

pi j( fi)S j( f ,n), (12)

or in matrix form as:

V ( f ,n+1) = r(1)( f )+P( f ) ·V ( f ,n), (13)

S( f ,n+1) = r(2)( f )+2 ·P( f ) ·R ·V ( f ,n)+P( f )S( f ,n), (14)

where R = [ri j]i, j is an N ×N-matrix and r(2)( f ) = [ r(2)i ( fi)]i, S( f ,n) = [Si( f ,n)]i are
column vectors.

Finally, on inserting from (12) in (6) we get for the variance σi( f ,n)

σi( f ,n+1) = r(2)i ( fi)+ ∑
j∈I

pi j( fi)σ j( f ,n)+2 · ∑
j∈I

pi j( fi) ri j ·Vj( f ,n)

−[Vi( f ,n+1)]2 + ∑
j∈I

pi j( fi)[Vj( f ,n)]2

= r(2)i ( fi)+ ∑
j∈I

pi j( fi)σ j( f ,n)+2 · ∑
j∈I

pi j( fi) ri j ·Vj( f ,n)

− ∑
j∈I

pi j( fi)[Vi( f ,n+1)+Vj( f ,n)][Vi( f ,n+1)−Vj( f ,n)].(15)
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3. Risk-neutral case: optimality equations

To begin with, (cf. Mandl 1971, Sladký 1974) first observe that if the discrepancy
function

ϕ i j(w,g) := ri j −g+w j −wi, for arbitrary g, wi ∈ R, i, j ∈ I, (16)

then by (4), (11)

Vi(π,n) = g+wi + ∑
j∈I

pi j( f 0
i ){ϕ i j(w,g)+Vj(π

1,n−1)−w j} (17)

= ng+wi +Eπ
i

n−1

∑
k=0

ϕXk,Xk+1
(w,g)−Eπ

i wXn . (18)

In what follows let ϕi( fi,w,g) := ∑
N
j=1 pi j( fi)ϕ i j(w,g)) be the expected discrep-

ancy accrued to state i ∈ I, and denote by ϕ( f ,w,g)) the corresponding N-dimensional
column vector of expected discrepancies. Then [P( f )]n ·ϕ( f ,w,g) is the (column) vec-
tor of expected discrepancies accrued after n transitions; its i-th entry denotes the dis-
crepancy if the process X starts in state i, g is a constant vector with elements g, w is a
column vector with elements wi.

Similarly, for the vector of total expected rewards earned up to the n-th transition
we get

V (π,n) :=
n−1

∑
k=0

k−1

∏
j=0

P( f j)r( f k) = ng+w+
n−1

∑
k=0

k−1

∏
j=0

P( f j)ϕ( f k,w,g)−
k−1

∏
j=0

P( f j)w (19)

and its i-th element Vi(π,n) is the total expected reward if the process starts in state i.
Observe that for n → ∞ elements of V (π,n) can be typically infinite.

Moreover, following stationary policy π ∼ ( f ) for n tending to infinity there exist
vector of average expected rewards, denoted g( f ) (with elements gi( f )), where

g( f ) = lim
n→∞

1
n

V ( f ,n) = P∗(π)r( f ). (20)

If P( f ) is unichain, then all rows of P∗(π) are equal to p∗(π), hence g( f ) is a
constant vector with elements

g( f ) = p∗(π)r( f ). (21)

Assumption A. There exists state i0 ∈ I that is accessible from any state i ∈ I for
every f ∈ F , i.e. for every f ∈ F the transition probability matrix P( f ) is unichain.

The following facts are well-known to specialists in stochastic dynamic program-
ming (see e.g. Howard 1960; Puterman 1994; Ross 1983).
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Theorem 1. If Assumption A holds, then

(i) For every f ∈ F there exist numbers g( f ), wi( f )’s (i ∈ I) such that

ϕ i( f ,w( f ),g( f )) = 0 ⇔ ri( fi)−g( f )+∑i∈I pi j( fi)w j( f )−wi( f ) = 0 ∀i ∈ I,
or in matrix form
ϕ( f ,w( f ),g( f )) = 0 ⇔ w( f )+g( f ) = r( f )+P( f )w( f ),
where g( f ) = P∗( f )r( f ).

(ii) There exists a decision vector f ∗ ∈ F (resp. f̂ ∈ F) along with (column) vectors
w∗ = w( f ∗), ŵ = w( f̂ ) with elements w∗

i , ŵi respectively, and g∗ = g( f ∗) (resp.
ĝ = g( f̂ )) (constant vector with elements g( f ) = p∗( f )r( f )) being the solution
of the (nonlinear) equation (I denotes the identity matrix)

max
f∈F


r( f )−g∗+(P( f )− I) ·w∗= 0, min

f∈F


r( f )− ĝ+(P( f )− I) · ŵ


= 0,

(22)
where w( f ) for f = f ∗, f̂ is unique up to an additive constant, and unique under
the additional normalizing condition P∗( f ) w( f ) = 0. Then for

ϕ( f , f ∗) := r( f )− g( f ∗)+(P( f )− I) · w( f ∗),

ϕ( f , f̂ ) := r( f )− g( f̂ )+(P( f )− I) · w( f̂ )
(23)

we have ϕ( f , f ∗)≤ 0, ϕ( f , f̂ )≥ 0 with ϕ( f ∗, f ∗) = ϕ( f̂ , f̂ ) = 0.

In particular, by (22)–(23) for every i ∈ I we can write

ϕi( f , f ∗) = ri( fi)−g∗+∑ j∈I pi j( fi)w∗
j −w∗

i ≤ 0,

ϕi( f , f̂ ) = ri( fi)− ĝ+∑ j∈I pi j( fi)ŵ j − ŵi ≥ 0.

Finally, if stationary policy π ∼ ( f ) is followed, there exist g( f ), wi( f )’s (for i ∈ I)
such that

ϕi( f , f ) = ri( fi)−g( f )+ ∑
j∈I

pi j( fi)w j( f )−wi( f ) = 0 with ∑
j∈I

p∗j( fi)w j( f ) = 0

and hence by (19)

V ( f ,n) := P( f )nr( f ) = ng( f )+w( f )−P( f )nw( f ). (24)

If P( f ) is aperiodic for n tending to infinity we get

lim
n→∞

P( f )n = P∗( f ), hence P∗( f )w( f ) = 0 (25)

and the convergence is geometrical.
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4. Risk-neutral case: mean reward variance

In this section we focus attention on the risk neutral case where the variability can
be evaluated by the mean variance of total expected reward. To this end, we shall
consider fixed stationary policy π ∼ ( f ). As we shall see under Assumption A for a
given stationary policy π ∼ ( f ) also σi( f ,n) (variance of total expected reward) grows
for n → ∞ linearly over time and its growth rate (independent of the starting state) can
be calculated similarly as the mean reward. Recall that for the considered stationary
policy π ∼ ( f ) the mean reward g( f ) = p∗( f )r( f ). Similar formula can be also used
for calculating mean variance as it is stated in the following theorem (for the proof see
the Appendix).

Theorem 2. Let Assumption A hold. Then the growth rate of the variance σi( f ,n) over
time is linear and independent of the starting state i, i.e.

G( f ) = lim
n→∞

σi( f ,n)
n

f or all i ∈ I. (26)

Moreover, there exists column vector s( f ) with elements si( f ) such that

G( f ) = p∗( f )s( f ), (27)
where

si( f ) = r(2)i ( fi)+ ∑
j∈I

pi j( fi)

[w j( f )]2 +2 ri j( fi)w j( f )


− [g( f )+wi( f )]2

= ∑
j∈I

pi j( fi)[ ri j( fi)+w j( f )]2 − [g( f )+wi( f )]2 (28)

= ∑
j∈I

pi j( fi)[ ri j( fi)+w j( f )−g( f )]2 − [wi( f )]2. (29)

Comparing (21) and (27) the difference is only in the column vectors r( f ) and
s( f ). Elements ri( fi) depends only on the decision taken in state i, i.e. on transition
probabilities pi j( fi) and transition rewards ri j, however elements si( f ) depends also on
g( f ) and w j( f ) for all j ∈ I. Considering stationary policies π ∼ ( f ) and π ′ ∼ ( f ′) we
can easily calculate the corresponding average rewards g( f ), g( f ′), but for calculating
the mean variances G( f ), G( f ′) in virtue of (28), (29) it is necessary to find along with
g( f ), g( f ′) also the values w j( f ), w j( f ′) for all j ∈I. The calculation can be simplified
only if w j( f ) =w j( f ′) for all j ∈ I, e.g. if there are two stationary policies maximizing
or minimizing mean reward, then we can easily select optimal policy minimizing the
mean variance. In some papers the problem is simplified by replacing in (27) si( f )
only by r(2)i ( fi), but the resulting policy need not minimize the variance (see e.g. Filar
et al. 1989; Huang and Kallenberg 1994; Kadota 1997; Kawai 1987; Kurano 1987;
Mandl 1971; Sladký and Sitař 2004; Sladký 2005; and Sobel 1985).

On the other hand, for the risk sensitive optimality, expectation of the exponential
utility function takes into account not only expected value of the (random) reward but
also all its higher moments.
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5. Risk-sensitive models: optimality equations

For the risk-sensitive models, let U γ

i (π,n) := Eπ
i (u

γ(ξn)) and hence Zγ

i (π,n) =
1
γ

lnU γ

i (π,n) is the corresponding certainty equivalent. In analogy to (17), (18) for ex-
pectation of the utility function we get by (16) for arbitrary g, wi ∈ R, i, j ∈ I

U γ

i (π,n) = eγ(g+wi) ∑
j∈I

pi j( f 0
i )e

γ{ϕ i j(w,g)−w j} ·U γ

j (π
1,n−1) (30)

= eγ(2g+wi) ∑
j∈I

∑
k∈I

pi j( f 0
i )e

γ{ϕ i j(w,g)−w j} · eγw j p jk( f 1
j )e

γ{ϕ jk(w,g)−wk} ·

·U γ

k (π
2,n−2)

...

= eγ(ng+wi)Eπ
i eγ{∑

n−1
k=0 ϕXk ,Xk+1

(w,g)−wXn}. (31)

In particular, for stationary policy π ∼ ( f ) assigning numbers g( f ), wi( f ) by (16)
we have

ϕ i j(w( f ),g( f )) := ri j −g( f )+w j( f )−wi( f ) (32)

and (30), (31) take on the form

U γ

i ( f ,n) = eγ(g( f )+wi( f ))
∑
j∈I

pi j( fi)eγ{ϕ i j(w( f ),g( f ))−w j( f )} ·U γ

j ( f ,n−1)

= eγ(ng( f )+wi( f ))Eπ
i eγ{∑

n−1
k=0 ϕXk ,Xk+1

(w( f ),g( f ))−wXn ( f )}
.

In what follows we show that under certain assumptions there exist wi( f )’s, g( f )
such that

∑
j∈I

pi j( fi)eγri j · eγw j( f ) = eγg( f ) · eγwi( f ), for i ∈ I. (33)

Now let ρ( f ) := eγg( f ), zi( f ) := eγwi( f ), qi j( fi) := pi j( fi)eγri j and introduce the
following matrix notation for column vectors U γ(π,n) = [U γ

i (π,n)]i, z( f ) = [zi( f )]i
and an N ×N nonnegative matrix Q( f ) = [qi j( fi)]i j.

Then by (33) for stationary policy π ∼ ( f ) we immediately have ρ( f )z( f ) =
Q( f )z( f ). Since Q( f ) is a nonnegative matrix by the well-known Perron-Frobenius
theorem ρ( f ) equals the spectral radius of Q( f ) and z( f ) can be selected nonnega-
tive. Moreover, if P( f ) is irreducible then Q( f ) is irreducible, and z( f ) can be selected
strictly positive. Recall (cf. Gantmakher 1959) that z( f ) can be selected strictly posi-
tive if and only if for suitable labelling of states of the underlying Markov chain (i.e.
on suitably permuting rows and corresponding columns of Q( f )) it is possible to de-
compose Q( f ) such that:

Q( f ) =


Q(NN)( f ) Q(NB)( f )

0 Q(BB)( f )


,
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where Q(NN)( f ) and Q(BB)( f ) (with spectral radius ρ(N)( f ) and ρ(B)( f )) are (in general
reducible) matrices such that:

– ρ(N)( f )< ρ( f );

– ρ(B)( f ) = ρ( f ) and Q(BB)( f ) is block-diagonal, in particular,

Q(BB)( f ) =

 Q(11)( f ) . . . 0
...

. . .
...

0 . . . Q(rr)( f )

 ,

where Q(ii)( f ) (with i = 1, . . . ,r) are irreducible submatrices with spectral radii
ρi( f ) = ρ( f ) with no access to any other class, i.e. Q(ii)( f ) are the so-called
basic classes of Q( f );

– each irreducible class of Q(NN)( f ) is non-basic and has access to some basic
class of Q( f ) (hence at least some elements of Q(NB)( f ) must be nonvanishing),
in contrast to irreducible classes of Q(BB)( f ) that are the basic classes of Q( f )
and also the final classes (i.e. having no access to any other class).

Finally observe that if P( f ) is unichain then z( f ) can be selected strictly positive if
the risk sensitivity coefficient γ is sufficiently close to zero.

In (33) attention is focused only on a fixed stationary policy π ∼ ( f ). The above
facts can be extended to all feasible policies under the following:

Assumption B. There exists state i0 ∈ I that for every f ∈ F i0 is accessible from
any state i ∈ I, i.e. for every f ∈ F the transition probability matrix P( f ) is unichain.
Furthermore, if for some f ∈ F the matrices P( f ) and also Q( f ) are reducible then
state i0 belongs to the basic class of Q( f ) (observe that each Q( f ) with f ∈ F has a
single basic class).

If Assumption B holds we can show (e.g. by policy iterations) existence of numbers
w∗

i (i ∈ I), g∗, and some f ∗ ∈ F such that for all i ∈ I

∑
j∈I

pi j( fi)e
γ{ri j+w∗

j} ≤ ∑
j∈I

pi j( f ∗i )e
γ{ri j+w∗

j} = eγ[g∗+w∗
i ], (34)

or equivalently

∑
j∈I

qi j( fi)z j( f ∗)≤ ∑
j∈I

qi j( f ∗i )z j( f ∗) = ρ( f ∗)zi( f ∗). (35)

Similarly if Assumption B is fulfilled there also exist ŵi (i ∈ I), ĝ, and some f̂ ∈ F
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such that for all i ∈ I

∑
j∈I

pi j( fi)eγ{ri j+ŵ j} ≥ ∑
j∈I

pi j( f̂i)eγ{ri j+ŵ j} = eγ[ĝ+ŵi], (36)

or equivalently

∑
j∈I

qi j( fi)z j( f̂ )≥ ∑
j∈I

qi j( f̂i)z j( f̂ ) = ρ( f̂ )zi( f̂ ). (37)

Observe that by (35), (37) it holds for any f ∈ F

Q( f )z( f ∗)≤ Q( f ∗)z( f ∗) = ρ( f ∗)z( f ∗), Q( f )z( f̂ )≥ Q( f̂ )z( f̂ ) = ρ( f̂ )z( f̂ ). (38)

The above facts can be summarized in the following theorem.

Theorem 3. If Assumption B holds, there exists decision vector f ∗ ∈ F (resp. f̂ ∈ F)
along with strictly positive column vector z( f ∗) (resp. z( f̂ )) and a positive number
ρ( f ∗), along with g( f ∗) = lnρ( f ∗), (resp. ρ( f̂ ), along with g( f̂ ) = lnρ( f̂ )) such that
(34)–(38) hold and for any f ∈ F ρ( f̂ )≤ ρ( f )≤ ρ( f ∗), g( f̂ )≤ g( f )≤ g( f ∗).

The proof (by policy iterations) based on ideas in Howard and Matheson (1972) can be
found in Sladký (2008b).

6. Necessary and sufficient optimality conditions

6.1 Risk-neutral case

To begin with, from Eq. (19) considered for decision vector f ∗ maximizing the average
reward with g = g∗, w = w∗, we immediately have for policy π = ( f n)

V (π,n) :=
n−1

∑
k=0

k−1

∏
j=0

P( f j)r( f k) = ng∗+w∗+
n−1

∑
k=0

k−1

∏
j=0

P( f j)ϕ( f k, f ∗)−
n

∏
j=0

P( f j)w∗.

(39)
Hence for stationary policy π∗ ∼ ( f ∗) maximizing average reward, we immediately
get

V (π∗,n) = ng∗+w∗−
n

∏
j=0

P( f j)w∗ (40)

and (cf. Mandl 1971; Sladký 1974) nonstationary policy π = ( f n) maximizes long run
average reward if and only if

lim
n→∞

1
n

n−1

∑
k=0

k−1

∏
j=0

P( f j)ϕ( f k, f ∗) = 0. (41)
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6.2 Risk-sensitive case

From Eq. (31) considered for decision vector f ∗ fulfilling conditions (34), (35), we
immediately have for policy π = ( f n)

U γ

i (π,n) = eγ(g∗+w∗
i ) ∑

j∈I
pi j( f 0

i )e
γ{ϕ i j(w

∗,g∗)−w∗
j} ·U γ

j (π
1,n−1) (42)

= eγ(ng∗+w∗
i )Eπ

i eγ{∑
n−1
k=0 ϕXk ,Xk+1

(w∗,g∗)−w∗
Xn}, (43)

and for stationary policy π∗ ∼ ( f ∗) with f ∗ fulfilling conditions (36), (37), we have

U γ

i ( f ∗,n) = eγ(ng∗+w∗
i )Eπ

i e{−γw∗
Xn}. (44)

Similarly,

U γ

i (π,n) = eγ(nĝ+ŵi) Eπ
i eγ{∑

n−1
k=0 ϕXk ,Xk+1

(ŵ,ĝ)−ŵXn}. (45)

Recalling that Zγ

i (π,n) =
1
γ

lnU γ

i (π,n), let

g′i(π) := liminf
n→∞

1
n

Zγ

i (π,n), g′′i (π) := limsup
n→∞

1
n

Zγ

i (π,n)

be the corresponding mean values of Zγ

i (π,n).

Theorem 4. Let Assumption B hold and g∗ = lnρ( f ∗), ĝ = lnρ( f̂ ). Then

lim
n→∞

1
n

Zγ

i (π,n) = g∗ if and only if lim
n→∞

1
n

ln


Eπ
i e

γ
n−1
∑

k=0
ϕXk ,Xk+1

(w∗,g∗)
= 0, (46)

lim
n→∞

1
n

Zγ

i (π,n) = ĝ if and only if lim
n→∞

1
n

ln


Eπ
i e

γ
n−1
∑

k=0
ϕXk ,Xk+1

(ŵ,ĝ)
= 0. (47)

Proof. Since the state space I is finite, there exists number K > 0 such that |w∗
i | ≤ K

for each i ∈ I. Hence by (43), (45) we immediately conclude that

eγ(nĝ+ŵi) · e−|γ|K ≤U γ

i (π,n)≤ eγ(ng∗+w∗
i ) · e|γ|K ,

nĝ+ ŵi + const.≤ Zγ

i (π,n) =
1
γ

lnU γ

i (π,n)≤ ng∗+w∗
i + const.

and (46), (47) follow by (43), (45). �

7. Conclusions

In this note we focused attention on necessary and sufficient optimality conditions
for more sophisticated optimality criteria in unichain Markov decision processes with
finite state space taking into account also the variability risk features of the model.
To this end, necessary and sufficient mean reward optimality conditions for unichain
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Markov models were obtained, and using the formulas for mean variance we can se-
lect in the class of mean optimal control the policy minimizing the mean variance.
Another approach for the so-called risk-sensitive optimality is based on replacing lin-
ear utility function by exponential utilities that are also separable and hence suitable
for sequential decision. Using some results of a family of nonnegative matrices nec-
essary and sufficient optimality conditions for risk-sensitive optimality are obtained if
the underlying Markov process is either irreducible, or unichain with the risk sensitive
coefficient sufficiently close to zero.
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Appendix

Proof of Theorem 2. (Based on Sladky 2005.)

For the sake of simplicity in what follows we omit arguments π, f , e.g. Ei, Vi(n), Si(n),
σi(n) respectively denotes the conditional expectation, expected reward up to n, its
second moment and variance respectively if policy π ∼ ( f ) is followed and X(0) = i,
pi j is the transition probability if action fi is chosen in state i ∈ I.

For the variance σi(·) = Si(·)− [Vi(·)]2 we have by (15)

σi(n+1) = r(2)i + ∑
j∈I

pi j ·σ j(n)+2 · ∑
j∈I

pi j ri j ·Vj(n)

− ∑
j∈I

pi j · [Vi(n+1)+Vj(n)] · [Vi(n+1)−Vj(n)]. (A1)

If P is aperiodic by (24) in the last term of (A1), we can substitute:

Vi(n+1)+Vj(n) = 2 ·n ·g+g+wi +w j + ε(n), (A2)

Vi(n+1)−Vj(n) = g+wi −w j + ε(n), (A3)

where ε(n)→ 0 geometrically. Hence by (22)

∑
j∈I

pi j · [Vi(n+1)+Vj(n)] · [Vi(n+1)−Vj(n)] =

= 2 ·n ·g · (g+wi − ∑
j∈I

pi j ·w j)+ ∑
j∈I

pi j · {[g+wi]
2 − [w j]

2}+ ε(n)

= 2 ·n ·g · r(1)i + ∑
j∈I

pi j · {[g+wi]
2 − [w j]

2}+ ε(n), (A4)

where limn→∞ ε(n) = 0 and the convergence is geometrical (cf. (24),(25)).

Similarly for the third term of (A1) we obtain by (24)

∑
j∈I

pi j ri j Vj(n) = ∑
j∈I

pi j ri j [n ·g+w j + ε(n)]

= n ·g · r(1)i + ∑
j∈I

pi j ri j ·w j + ε(n). (A5)
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Substituting (A5) and (A4) in (A1) now yields

σi(n+1) = ∑
j∈I

pi j ·σ j(n)+ r(2)i +2 · ∑
j∈I

pi j ri jw j

− ∑
j∈I

pi j · {[g+wi]
2 − [w j]

2}+ ε(n)

= ∑
j∈I

pi j ·σ j(n)+ si + ε(n), (A6)

where

si = r(2)i + ∑
j∈I

pi j

[w j]

2 +2 ri jw j

− [g+wi]

2

= ∑
j∈I

pi j[ ri j +w j]
2 − [g+wi]

2 (A7)

= ∑
j∈I

pi j[ ri j +w j −g]2 − [wi]
2 . (A8)

(A8) follows immediately since

−2 ∑
j∈I

pi j(ri j +w j)g+g2 =−2(g+wi)g+g2 =−g2 −2wig.
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