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Abstract In this paper we study the collusion in Knaster’s procedure, starting from the paper
of Fragnelli and Marina (2009). First, we introduce a suitable dynamic mechanism, so that the
coalition enlargement is always non-disadvantageous. Then, we define a new class of TU-games
in order to evaluate the collusion power of the agents.
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1. Introduction

The collusion is a secret and fraudulent agreement among two or more agents for an
illicit purpose, at damage of other ones. This general definition reflects an ancient and
frequent practice which affects various sectors, from policy to markets (price cartel,
cartel of banks and trust). Collusion was already known in ancient Rome, as attested by
the term collusio used by Cicero and Seneca. Auctions and sports are also not immune
from collusion. For example, auctions with low minimum prices are vulnerable to
collusion among bidders. Graham and Marshall (1987) study the optimal minimum
price set by a seller, while Mead (1967) and Milgrom (1987) prove that ascending-
bid auction is more susceptible to collusion than sealed-bid auction. To avoid that
judges of artistic sports collude, Federations adopt various strategies in the regulations
(Gambarelli et al. 2012). We recall that the collusive behavior is illegal. For instance,
the Italian Civil Code punishes the suspected or supposed colluders.

In this paper, starting from the results in Fragnelli and Marina (2009), we ana-
lyze the problem of collusion in Knaster’s procedure (1946), a tool which allocates
indivisible objects with monetary compensations in order to restore fairness: each in-
divisible item is first exchanged for money equal to the highest valuation of it, then
the monetary quantity is shared among all the agents according to their valuations.
Knaster’s procedure is efficient (there is no other distribution that yields every agent
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a higher payoff), and proportional (each of the n agents thinks to receive at least one
n-th of the total value), if the agents report their true valuations (Brams and Taylor
1996, 1999); but it is subject to the manipulation. When an agent misreports her/his
valuation individually, Knaster’s procedure is manipulable, since there is no Pareto
efficient and strategy-proof (non-manipulable) procedure (Holmström 1979), where
strategy-proofness means that truthful report is a dominant strategy (Svensson 1999,
2009). Using a different concept of manipulation, Knaster’s procedure with infinitely
risk-averse agents is non-manipulable, since there is no way of obtaining a safe gain
(Fragnelli and Marina 2009). If two or more agents (but not all) coordinate their false
declarations, Knaster’s procedure proves to be coalition-manipulable, where a mecha-
nism is said coalition-strategy-proof when “if a joint misreport by a coalition strictly
benefits one member of the coalition, it must strictly hurt at least one other member”
(Moulin 1993). We follow the line started in the paper by Fragnelli and Marina (2009),
making the same assumptions and adopting the same definitions. They show that the
gain produced by the agreement is always non-negative, even if enlarging the set of
colluders the gain may increase or decrease.

The aim of this paper is twofold: to analyze whether the collusion from a dy-
namic viewpoint, i.e. after enlarging the set of colluders, may be always profitable,
despite the non-monotonicity of the gain; then we propose a way to measure the rele-
vance of each agent in the collusion mechanism. More precisely, first we prove that,
through a suitable dynamic mechanism, the coalition formation process is always non-
disadvantageous, since the previous gain of the incumbent colluders is guaranteed by
their altered declarations, so they secure themselves against the entrant colluders; se-
cond, we introduce the class of collusion games and use the Shapley value to evaluate
the influence of each agent.

The paper is organized as follows. Game theoretic definitions and notions we refer
to in the paper are presented in Section 2. In Section 3 we recall Knaster’s proce-
dure applied to a single indivisible object and describe the collusion mechanism for
Knaster’s procedure among completely risk-averse agents. In Section 4 the dynamic
process of coalition formation is illustrated. In Section 5 we propose two possible di-
vision schemes. Section 6 introduces the TU-game associated to collusion, focusing
on the Shapley value. Section 7 concludes.

2. Recalls of game theory

In this section, we shortly present some classical concepts in game theory.
A Transferable Utility game or TU-game in characteristic function form is a pair

〈N,v〉, where N = {1, . . . ,n} is a finite set of players and v : 2N → R is a real function,
with v( /0) = 0, called characteristic function. A subset S ⊂ N is called coalition and
N is called grand coalition. v(S),S ⊆ N, is the worth of S, i.e. the utility that the
players in S may obtain independently from the other players. We say that a TU-game
〈N,v〉 is inessential, if v(N) = ∑i∈N v({i}); monotonic, if v(S)≤ v(T ) whenever S⊆ T ;
cohesive, if v(N)≥ ∑ j=1,..,k v(S j) for any partition {S1, . . . ,Sk} of N; superadditive, if
v(S∪T )≥ v(S)+v(T ) whenever S∩T = /0; convex, if v(S∪T )+v(S∩T )≥ v(S)+v(T )
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whenever S,T ⊆ N. Given a TU-game 〈N,v〉, an imputation is a vector (xi)i∈N ∈
Rn, such that ∑i∈N xi = v(N) (efficiency) and xi ≥ v({i}) for each i ∈ N (individual
rationality). The core of a game is the set of imputations such that ∑i∈S xi ≥ v(S) for
each S⊂ N (coalitional rationality).

An allocation rule for a TU-game is a function ψ which assigns an allocation ψ(v)
to every TU-game 〈N,v〉 in the class of games with player set N. One of the most usual
rules is the Shapley value (Shapley 1953), ϕ , given by ϕi(v) = ∑S⊆N:i/∈S

[(
(n− s)!(s−

1)!
)
/n!
]
· (v(S∪{i})− v(S)), for all i ∈ N, where s is the cardinality of S.

3. Preliminaries

In this section we recall the concepts of Knaster’s procedure (1946) and collusion
among infinitely risk-averse agents (Fragnelli and Marina, 2009).

3.1 Knaster’s procedure for one object

Applying the Knaster’s procedure, we suppose that the value of each object obtained
by an agent is independent from who has obtained the other objects (additivity), so
the problem of allocating a set of objects simply corresponds to treating each object
independently, as Fink wrote to Brams (mentioned in Brams and Taylor 1996).

Let N = {1, . . . ,n} be the set of agents, which we assume to be completely risk-
averse, to have the same valuation of monetary quantities, and to have equal rights on
the object. We suppose that agent i∈N knows only her/his own valuation vi of the item
and does not use any statistical information on the valuations of the others. We assume
also that agents are not subject to any liquidity or budget constraints. Without loss
of generality, we assume that the agents are ordered according to weakly decreasing
valuations, i.e. v1 ≥ v2 ≥ . . . ≥ vn and, in case of multiple maximal valuations, we
call 1 the agent who receives the object at the end of the procedure. After that the
valuations are communicated to a mediator, agent 1, that has the highest valuation v1,
gets the object and pays her/his valuation; exchanging the indivisible item for money
makes the division possible. Each agent i ∈ N receives the expected initial fair share
Ei = (1/n) · vi, plus an equal share of the surplus s = v1− (1/n) ·∑ j∈N v j. The surplus
is non-negative (Brams and Taylor 1996), in particular it is zero if and only if all the
valuations are exactly the same (Kuhn 1967). The adjusted fair share or payoff of
agent i ∈ N is Vi = Ei + s/n = vi/n+ v1/n− (1/n2) ·∑ j∈N v j.

At the end of the allocation, the sum of the compensations in money c1 =(1−n/n)·
v1 + s/n and ci = vi/n + s/n, for i ∈ N \ {1} is zero, so Knaster’s procedure does not
require or produce money (Brams and Taylor 1996). The solution is proportional since
it secures to agent i ∈ N a portion Vi ≥ (1/n) · vi. Knaster’s procedure with more than
two agents does not guarantee envy-freeness, as an agent may prefer another’s portion
to her/his own. For instance, agent k may envy agent j, with 1 < j < k ≤ n, whenever
c j > ck, i.e. v j > vk.

Czech Economic Review, vol. 6, no. 3 201



F. Briata, M. Dall’Aglio, V. Fragnelli

3.2 Collusion

Some agents may decide to coordinate their declarations and misreport their valuations
in order to increase their shares in Knaster’s procedure. According to Fragnelli and
Marina (2009), the colluders, after exchanging information on their valuations, agree
both on altering their declarations and on sharing the safe gain.

Definition 1. A collusion of a coalition of completely risk-averse agents consists of
three elements: a revelation of their true valuations, a binding agreement on the same
declaration of their highest true valuation and a binding agreement on the gain shar-
ing.

We remark that a binding agreement is necessary, since at least the agent with
the highest declaration suffers a loss, but s/he accepts to collude if the other partners
assure for him a compensation. Moreover, we can notice that the colluding groups are
disjoint, as an agent colluding with two groups is unmasked when the bids are made.

Formally, let C = {i1, . . . , ic} ⊂ N be the set of colluders with agents ordered ac-
cording to weakly decreasing valuations, i.e. vi1 ≥ vi2 ≥ . . . ≥ vic . It is sufficient to
study partial collusion (agreement among a part of the agents), since the gain of total
collusion (agreement among all the agents) is always zero. According to Definition 1,
all the colluders agree on declaring bC = vi1 . At the end of the procedure, the colluders
with a gain compensate the colluders with a loss and then they share the total gain
GC =

(
(n− c)/n2

)
·∑k∈C(bC− vk). Each agent outside the colluding coalition suffers

the same loss as the others, i.e. GC/(n− c) =
(
1/n2

)
·∑k∈C(bC− vk).

The collusion gain is always non-negative, in particular it is null only if the collu-
sion is total or if the colluders have the same valuation. The profit from collusion is
non-monotonic with respect to the number of colluders: when c increases there is one
more non-negative term in the summation, but n− c decreases.

To make the previous concepts clearer, we revise Example 1 in Fragnelli and Ma-
rina (2009).

Example 1. The true valuations of four completely risk-averse agents, 1, 2, 3, and 4,
for an indivisible object and their payoffs are as indicated in Table 1.

Table 1. Initial situation: no collusion

Agent 1 2 3 4

True valuation 240 192 80 48
Payoff 85 73 45 37

Assume (Scenario 1) that agents 1 and 4 collude declaring 240 units (see Table 2;
colluders declarations are underlined). Agent 4 refunds with her/his gain of 36 units
the loss of agent 1 of 12 units, then they share the safe gain G{1,4} = 24.

Now, assume (Scenario 2) that the collusion involves agents 1 and 2 (see Table 3).
Referring to the initial situation, agent 2 refunds with her/his gain of 9 units the loss of

202 Czech Economic Review, vol. 6, no. 3



Dynamic Collusion and Collusion Games in Knaster’s Procedure

Table 2. Scenario 1: collusion between agents 1 and 4

Agent 1 2 3 4

Declaration 240 192 80 240
Payoff 73 61 33 73

Table 3. Scenario 2: collusion between agents 1 and 2

Agent 1 2 3 4

Declaration 240 240 80 48
Payoff 82 82 42 34

agent 1 of 3 units, then they share the safe gain G{1,2} = 6.
Finally, assume (Scenario 3) that the collusion involves agents 1, 2, and 4 (see

Table 4). Referring to the initial situation, agents 1 and 2 have a loss of 15 and 3 units,
respectively, while agent 4 has a gain of 33 units, so s/he compensates the partners and
then the three agents share the safe gain G{1,2,4} = 15.

Table 4. Scenario 3: collusion between agents 1, 2, and 4

Agent 1 2 3 4

Declaration 240 240 80 240
Payoff 70 70 30 70

Example 1 shows that the gain has no monotonicity property, as G{1,2}< G{1,2,4}<
G{1,4}, and also that G{1,2}/2 < G{1,2,4}/3 < G{1,4}/2. If we analyze the collusion as
a static mechanism, i.e. supposing that the colluding coalition is formed after a unique
negotiation, we may conclude that the colluders cannot a priori be in favor or against
a larger group.

Since the gain GC depends on n, c, the valuations of the colluders, and is indepen-
dent from the declarations of the other agents, each colluder knows the true valuations
of the others and, then, the gain, only during the first phase (truthful revelation of the
valuations) of formation of the collusion. In other words, first s/he chooses the part-
ners, then s/he knows the gain. On the other hand, if we analyze the collusion as a
dynamic mechanism, that is dependently on how the coalition is formed, we can ob-
tain a weakly profitable process for enlarging the colluder set, since who enters the
collusion may compensate the incumbents for the loss caused by her/his entrance. It is
sufficient that the incumbent colluders communicate to the entrant colluders the same
valuations, according to their previous colluding agreement.
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4. Coalition formation: subsidizations and compensations

In this section we prove that the dynamic mechanism of coalition formation gives ad-
vantageous results despite the potential reduction of total gain. Let I = {i1, . . . , ii} ⊂N
be the set of incumbents, ordered according to weakly decreasing valuations, who had
already colluded, agreeing on declaring bI = vi1 and on the gain sharing; let E =
{ j1, . . . , je} ⊆N \I be the set of entrants, ordered according to weakly decreasing val-
uations. The agents in the new colluding coalition C = I ∪E (note that |C|= c = i+e)
agree on declaring bC = max(bI ,bE), where bE = v j1 , and on a gain sharing.

As it is said in Fragnelli and Marina (2009), “the gain of the colluders is inde-
pendent from any fixed (false or true) declaration of the agents not involved in the
collusion. Consequently, if two or more groups of colluders form, the variation of the
total payoff of each group is not affected by the formation of the others. Of course the
final payoff of each agent depends on the declaration of all the agents” (Fragnelli and
Marina 2009, p. 150), then it is not important whether the agents in E have colluded
among them or not and whether the set I has been formed in a sequence of steps or
only in one step. Consequently, it is sufficient to analyze only one stage of the coalition
formation process.

The dynamic mechanism is non-disadvantageous if the situation of the agents in C
after the enlargement is weakly preferable to the previous situation of the agents in I
and in E , i.e. if GC ≥ GI −LI(E), where LI(E) denotes the total loss of the agents in
E after the collusion of the agents in I. Note that

GC =
n− c

n2 ∑
k∈C

(bC− vk) =
n− c

n2

(
∑
k∈I

(bC−bI)+ ∑
k∈I

(bI − vk)+ ∑
k∈E

(bC− vk)

)

and

GI −LI(E) =
n− i
n2 ∑

k∈I
(bI − vk)−

e
n2 ∑

k∈I
(bI − vk) =

n− c
n2 ∑

k∈I
(bI − vk),

so

GC−
(
GI −LI(E)

)
=

n− c
n2

(
∑
k∈I

(bC−bI)+ ∑
k∈E

(bC− vk)

)
≥ 0.

This means that GC + LI(E) ≥ GI , i.e. the entrants use their initial loss LI(E) to
subsidize the possible reduction of gain corresponding to GC−GI of the incumbents
due to the enlargement; then the non-negative gain GI,E = GC +LI(E)−GI is shared
among the agents in C. GI,E may be viewed as the gain of the enlargement of the
colluding group from I to I ∪E after that the agents in E refund the (possible) loss of
the agents in I.

We can apply the dynamic mechanism to the situation in Example 1.

Example 2. Suppose that agents 1 and 4 collude, with a gain of 24 units and that
agent 2 enters the collusion reducing the total gain, in the static model, to 15. In the
dynamic model, we may provide a profitable situation to the three agents. Comparing
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Scenarios 1 and 3, agent 2 has a reduction of her/his loss of 9 units that is used to
refund the loss of 3 units of both agents 1 and 4, generating the gain G{1,4},{2} = 3.

Analogously, suppose that agents 1 and 2 collude, with a gain of 6 units and that
agent 4 enters the collusion. Comparing Scenarios 2 and 3, agent 4 has a gain of 36
units that is used to refund the loss of 12 units of both agents 1 and 2, generating the
gain G{1,2},{4} = 12.

Finally, suppose (Scenario 4) that also agent 3 enters the collusion with the other
three agents (see Table 5). Comparing Scenarios 3 and 4, agent 3 has a reduction of

Table 5. Scenario 4: collusion between all the agents

Agent 1 2 3 4

Declaration 240 240 240 240
Payoff 60 60 60 60

her/his loss of 30 units that is used to refund the loss of 10 units of the agents 1, 2
and 4, generating the gain G{1,2,4},{3} = 0, so the colluders become aware of being the
grand coalition.

5. Allocation of the gain

In this section, we propose two rules for allocating the gain of the collusion in the
dynamic mechanism, the equal division rule (EQ) and the division proportional to the
original valuations (PROP).

(i) Equal division rule.

At each step of the collusion, the extra gain GI,E is equally shared among all
the agents. So, the agents in I obtain GI,E/c+GI/i and the agents in E obtain
GE,I/c.

(ii) Division proportional to original declaration rule.

At each step of the collusion, the extra gain GI,E is shared among all the agents
proportionally to their declaration at the step when the collusion started. This
means that each agent i∈ I refer to her/his false declaration bI while each agent
j ∈ E refer to her/his valuation v j.

In the following example we apply these two rules to the situation in Scenario 3 of
Example 1.

Example 3. Suppose that agent 2 enters collusion {1,4}. With the EQ-rule the gain
for agents 1 and 4 is 3

3 + 24
2 , so their final payoffs are 98 and 50 units, respectively; for

agent 2 the gain is 3
3 and her/his final payoff is 62.
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With the PROP-rule the gains for agents 1 and 4 are 240
240+240+192 × 3 + 240

240+48 ×
24 = 21.07 and 240

240+240+192 ×3+ 48
240+48 ×24 = 5.07, respectively, so their final pay-

offs are 106.07 and 42.07, respectively; for agent 2 the gain is 192
240+240+192 ×3 = 0.86

and her/his final payoff is 61.86.

Remark 1. The equal division coincides with the Nash solution of the bargaining
problem (Nash 1950) in which the feasible set contains all the possible allocations.
The equal division may assign to an agent with a very low valuation more than her/his
value of the item (see agent 4 in Example 3), but this is not a real problem as it may
happen also in the Knaster’s procedure without collusion.

6. Collusion game

In this section, we introduce a new class of games, the collusion games whose player
set is a subset of the agents of a division situation and whose characteristic function
assigns to each coalition the value of the collusion of its members in the situation at
hand. More precisely, fixed a group of agents S = {i1, . . . , is} ⊆ N, the collusion game
of the players in S is 〈S,vS〉, with vS defined by

vS(C) =
n− c

n2 ∑
k∈C

(bC− vk), ∀C ⊆ S.

Note that the gain of coalition C in the game with player set S depends on the
number of agents in N. The value of vS(C) is zero when C is a singleton, so the
imputation set is always non-empty, while the core may be empty or not. The core
is always non-empty when |S| = 2 and it coincides with the imputation set, while for
larger player sets nothing may be stated, as the following example shows.

Example 4. Consider a situation with N = {1,2,3,4,5} whose true valuations are 22,
22, 22, 2 and 2, respectively. If S = {1,2,3} we have the null game that has non-empty
core, while if S = {2,3,4} we have vS(23) = 0,vS(24) = vS(34) = 2.4,vS(234) = 1.6
so the core is empty.

When S = N the game is inessential, but it is interesting for evaluating the relevance
of the agents in the static collusion mechanism. In particular, we suggest to use the
Shapley value as a measure of the collusion power of each player. As the game vN is
inessential, the Shapley value has positive and negative components, except for the null
game; players with positive values may profit, on average, from a static collusion, while
players with negative values suffer, on average, from a static collusion. A theoretical
application is an ex-ante analysis of the profitability for an agent to participate in a
colluding group, supposing we know the ex-post valuations, like an impartial external
observer with complete information. The Shapley value may be viewed as an insurance
against collusions, that the agents with negative values pay to the agents with positive
values. Of course, from a practical point of view it is difficult to have such a complete
information.
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Example 5. Consider the situation in Example 1; in this case the Shapley value when
all the agents collude is ϕ(vN) =

( 8
3 ,− 16

3 ,− 2
3 , 10

3

)
.

The possibility of negative components of the Shapley value also when S is not
the grand coalition makes it not suitable as an allocation rule of the gains, so the rules
presented in Section 5 are more appealing, and also more easy to compute.

Example 6. Consider the situation in Example 4; if agents 1, 2, 3 and 4 collude, the
Shapley value of the game v{1,2,3,4} assigns a negative amount to players 1, 2 and 3.

Finally, it is easy to verify the lack of several properties for the games 〈S,vS〉,S ⊆
N. Referring to the situation in Example 1, let S = {1,3,4}, the game vS, is non-
monotonic, since vS({1,3,4}) = 22 < 24 = vS({1,4}), it has empty core, and conse-
quently, it is neither cohesive nor convex and it is non-superadditive, since vS({1,4})+
vS({3}) > vS({1,3,4}).

7. Concluding remarks

In the static collusion, an external observer or the agents involved in the collusion may
have interest in finding the optimal coalition. This research is open to several interpre-
tations. One can study the maximal total utility coalitions, that is argmax v(C), or the
maximal per capita utility coalitions, that is argmax v(C)/c. On the other hand, in the
dynamic process of coalition formation, it is difficult to answer to the question on the
optimal coalition. The agents out of the colluding group are interested in entering the
collusion, since they may increase their profits, or at least decrease their losses after
the collusion of the incumbents. So, in the dynamic perspective, the coalition enlarge-
ment is never disadvantageous, since the incumbent colluders guarantee themselves
the previous gain by their altered declarations and secure themselves against the en-
trant colluders. Referring to Example 1, the optimal collusion seems to be {1,4} since
G{1,4} = 24, but, when agent 2 adds to the incumbent colluders they share the extra
gain G{1,4},{2}.
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